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Abstract

Modernsupercomputers involve complex interactions be-
tween complex components crossing tens of clock domains
— per node. Thousands (and soon hundreds of thousands)
of nodes are used to achieve the level of performance needed
to address the nation’s most challenging problems. This
growing complexity makes system design ever more chal-
lenging; however, microprocessors are facing mounting chal-
lenges in delivering performance on scientific applications.
This has led to a drive for innovation in systems where the
impact of innovation is hard to predict. The Structural Sim-
ulation Toolkit (SST) was developed to explore innovations
in systems where the processor and memory interact with
the programming model and communications system. It is
designed to be an open source framework that unifies hybrid
discrete event simulation and time-stepping simulation to
enable both detailed and abstracted simulations. The focus
on parallel systems has been validated through experimen-
tation with models of everything from processing in memory
to conventional microprocessors connected by conventional
network interfaces.

1. Introduction and Motivation

The solution of the nation’s most demanding problems in
science, defense, and intelligence requires massively scal-
able systems. On modern systems, an application written to
a specific programming model runs on a set of processors
that communicate through a network. These systems are
rarely (if ever) simulated in their entirety because the com-
munity lacks the simulation environment needed to perform
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such an ambitious simulation. Instead, state of the art prac-
tice simulates components in isolation under a set of con-
ditions that are believed to be representative. In the best of
cases, the interaction of a pair of components is included in
the simulation. Unfortunately, each generation of machines
makes this methodology less tenable.

Bringing a new parallel computer architecture to market
is expensive and time-consuming. Designing the microar-
chitecture, designing the network, fabricating the necessary
silicon, developing the tool chain that goes from program
to executable, and evaluating the combination with a be-
lievable workload to verify that it is in fact “better” are all
significant undertakings. With each generation, the design
time (and therefore cost) increases. Unfortunately, the im-
pacts of changes in each of the components is not well un-
derstood. Current practice relies on a “rule of thumb” for
the relative performance needs of the components and sub-
tle interactions between the components are not discovered
until system deployment. This often leads to systems that
fail to meet their design objectives — failures that could be
prevented with adequate system simulation.

What is needed is a simulation infrastructure that is avail-
able to every researcher that will support answering ques-
tions about system performance at scale (thousands of nodes).
If ¡insert your novel processing technology here¿ acceler-
ated an individual node by a factor of 10, would the sys-
tem continue to scale efficiently? How will system perfor-
mance change if we change the network topology? Can
we enhance the network interface to improve MPI perfor-
mance? What would happen if a change in programming
model changed the message size and frequency?

Supercomputing systems are much more complex than
can be modeled conveniently by existing, open, available
research tools. Processing components can include micro-
processors, vector processors, CMPs, processing in mem-
ory, and stream based architectures. Large scale machines
are created by connecting processors through network inter-
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face chips (which tend to be complex systems on chip de-
signs)to routers that support a variety of topologies. While
these components can be modeled in isolation, even the
simulation of small system scale integration tends to re-
quire a “one-of-a-kind” effort. Furthermore, it isimpossi-
ble to simulate systems in detail (near cycle accuracy) at the
scales (thousands of components) where issues of scalebe-
gin to appear running applications for a meaningful amount
of time (an hour of more of simulated time to capture the
evolution of the application over time). There is a real need
for a “plug and play” infrastructure where each component
can be simulated at every level of detail. Processor, net-
work, and router simulations must range from cycle accu-
rate models to simplified statistical models. High level mod-
els must be tunable to match the performance characteristics
of detailed models as closely as possible and the various lev-
els of modeling must be easily combinable to enable studies
of the impacts of minor microarchitectural perturbations on
systems at the largest of scales.

The Structural Simulation Toolkit (SST) discussed in this
paper was developed to help solve these problems, and to
allow exploration of highly concurrent systems where the
ISA, microarchitecture, network, and multi-node system is-
sues need to be explored together. SST is modular and pro-
vides the ability to modify one characteristic at a time with-
out having to rip up the rest, or modify support tools such as
compilers until necessary or appropriate. The key to this is
the explicit separation of program and instruction interpre-
tation (the “front end”) from instruction and microarchitec-
tural timing (the “back end”), combined with a hybrid dis-
crete event and time-stepping simulation framework. The
interface to the front end supports multiple program formats
such as instruction traces and compiled executables. The
back end interface supports multiple levels of detail, from
simple functional simulation to models of collections of het-
erogeneous processors. Introduction of new front or back
end components can be done independently of the other.

Experiments to date have used this simulation structure
to explore software and hardware techniques related to pro-
cessing in memory, novel NIC architectures to support MPI
communication, vector processing, and has recently been
equipped with a three dimensional router model. The typ-
ical initial experimental costs have been in the range of a
handful of days of development time and results in simu-
lation performance comparable to the state of the art. To-
gether, this indicates that such a structure can have a signif-
icant effect on future architectural research.

2. Related Work

A variety of simulators and simulation strategies are used
in computer architecture, providing a range of features and
functionality. A major goal of the Structural Simulation

Toolkit is to build upon the success of these previous works.

2.1. Architectural Simulators

Many architectural simulators have been written to ex-
plore design issues on the processor or system level. These
simulators represent programs by execution-based, trace-
based, or stochastic mechanisms. They vary in level of de-
tail, configurability, and focus.

SimpleScalar[7] is one of the most commonly used ar-
chitecturalsimulation toolkits. It includes a number of ex-
ecution-based simulators, ranging from simple execution to
cache simulation to full simulation of an out-of-order pro-
cessor and memory hierarchy (sim-outorder). A num-
ber of processor parameters can be adjusted, such as issue
width, functional units, internal queue lengths, and cache
characteristics. Though SimpleScalar only models a single
conventional processor, several derivatives have extended
its functionality. The SImulator for Multithreaded Com-
puter Architecture [16] (SIMCA) was developed to explore
multi-threaded architectures by augmenting the PISA ISA
to include instructions for thread creation and control. An-
other derivative, MPsimplesim[23] presented multiproces-
sor cache simulation capabilities. However, this simula-
tor only modeled cache interactions and did not attempt to
model detailed timing. Other multiprocessor simulators in-
clude Solo[12], RSIM[17], ML-RSIM [30], Tango[13], and
MINT[34].

Othersimulators have been developed to enable specific
functionality. For example, SimOS[15], Talisman[6], and
ML-RSIM[30] are capable of supporting the execution of an
OS.SPIM[20] was developed as a teaching tool for explor-
ing the MIPS ISA. Others, such assimg4[25] and simg5,
weredeveloped to model a specific processor (the PowerPC
7400 and 970) in detail. Both of these simulators are trace-
based, and provide a high level of detail, but lack a high
degree of parameterization. Additionally, they do not at-
tempt to simulate a full system with multiple processors or
network.

The ASIM[8] performance model framework is compris-
edof a set of modules which can be composed to form dif-
ferent architectures. A novel feature of ASIM is the par-
tial separation of the performance model for system compo-
nents from the program execution.

Other modular simulation efforts include the Liberty Sim-
ulation Environment[33], which has developed a number of
modulesin its own LSS language, and Microlib which pro-
vides a number of modules in SystemC[1].

Themessage PAssing computeR SIMulator, PARSIM[32]
was developed to explore algorithms and network topolo-
gies for parallel computers. It models program execution as
a generalized algorithm divided into computation and com-
munication. Processor speed and network characteristics



can be parameterized, but no attempt is made to model the
internalsof the processor.

Some simulators focus on network modeling, such as
DaSSF[22] and GTNetS[27]. These simulators can simu-
late large networks in great detail, allowing for a variety
of different topologies, protocols, and link characteristics.
However, these simulators do not attempt to model the ex-
act execution of a program or the internal architecture of a
system. Instead program communication patterns are gen-
erated stochastically.

2.2. Models of Computation

An important characteristic of a simulator is the under-
lying model of computation[21] which defines how time is
advanced and how components interact. Most architectural
simulators use one of the following approach:

• Synchronous,or time-stepped, models discretize time
into fixed increments. At each increment, all com-
ponents are evaluated and the effects are propagated.
Simulators using this approach include SimpleScalar
[7], SPIM [20], or PARSIM [32].

• Discrete Event,or event-driven, approaches only eval-
uate transition functions if component inputs change,
or if an event is received from another component in
the system.

• Process-modelusesprocesses to model components.
Processes represent the activities of some component,
how it interacts with other components and how it ad-
vances its own state. The framework provides a fa-
cility to schedule execution of processes and switch
between them to simulate simultaneous action [31].
Examplesof this include CSIM and SSF.

• Hybrid simulatorscombine two or more simulation
techniques. For example,Enkidu uses both time-
stepped and discrete event models and SSF [22] uses
bothprocess-based and discrete models.

Discrete event simulation is popular for general simula-
tion, battle space simulation, gate-level microarchitectures,
and network simulation, where many components generate
events at varied rates. Synchronous simulation is more pop-
ular in architectural processor simulation, where every com-
ponent would often generate an event every clock cycle.

When inter-component interaction is infrequent, discrete
event simulations have an advantage, in that they can “skip”
intermediate time steps between event arrivals. Note that in
a pure discrete event simulation, if a component needs to
change its state it must send an event to itself. However,
when events are relatively infrequent, asynchronous simu-
lation tends to incur less overhead.

Process-oriented simulation allows components to up-
date their state without an explicit event. As such, they can
be an elegant way of expressing frequent, repetitive, behav-
ior (like a time-stepped system) while still allowing non-
uniform time steps (like an asynchronous system). How-
ever, process context switching can become a significant
source of overhead [31,22].

Many works have looked at simulation speed for given
simulations, or at the overhead provided by a particular frame-
work [26]. Much of this work has focused on parallel dis-
crete event simulation[11,19], often focusing on the bene-
fits of a particular language or framework such as SSF[22]
or PARSEC [32].

3. Framework

Structural Simulation Toolkitis an architectural simulator
implemented in about 45,000 lines of C++. It is composed
of four primary elements (see Figure1): theFront Ends,
which model the execution of a program; theBack Ends,
which model architectural components of the system; the
Processor/Thread Interface, which allows the front and
back ends to interact; andEnkidu[29], a component-based
discreteevent and synchronous simulation framework that
coordinates communication between back end components
and models the passage of time. To provide modularity
and reconfigurability, it is possible to select a front end and
choose a variety of back end components at run time. This
allows the user to explore a variety of hardware configu-
rations while using the execution model best suited to the
available toolset.

3.1. Front End

The front end is responsible for generating instructions
and threads to be processed by the back end. The front end
also defines how the execution of these instructions changes
the programmer visible state. Put another way, the front end
simulates the “software” or programmer visible side of the
system.

The front end provides a loader which loads the program
into the simulated memory before the simulation begins.
Once simulation begins, the front end provides instruction
and thread objects to the back end (see Section3.3). Most
importantly, it determines how the program state (usually
memory and registers) are modified by the instruction’s ex-
ecution. This usually involves a lookup of the instruction
in a “big case statement” to ascertain how state should be
updated. This “big case statement” performs a similar func-
tion to SimpleScalar’s[7]ss.def or powerpc.def files,
or SPIM’s[20] run.c. Currently, three front ends exist and
can be selected at run-time.
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Figure 1. Simulator Framework and Component

• PISA: an execution-based front end which uses the
PISA ISA and the ELF executable format. The PISA
ISA is augmented with extra instructions to provide
added functionality required to simulate experimen-
tal hardware. These instructions were added to to
explore low-cost thread spawning and different syn-
chronization primitives, to allow a processor to com-
municate with a subordinate processor on a NIC, to
access specialized hardware such as network inter-
faces, DMA engines, or custom components, and to
allow a processor to select between different address
spaces. The PISA front end allows use of modified
versions of thegcc or g++ compilers version 2.7.2.

• PPC: An execution-based front end which uses the
PowerPC ISA[24] and the MachO[4] executable for-
mat. This PowerPC ISA is augmented in a manner
similar to the PISA ISA. It also includes a small sub-
set1 of the AltiVec vector extensions. The MachO
format is the standard format for MacOS X executa-
bles and allows the use of binaries created by a num-
ber of modern compilers. It has been tested withgcc
andg++ versions 3.1 and 3.3, g77 version 3.4, IBM
XLF 8.1 FORTRAN 77/90 compilers, and Absoft 8.0
FORTRAN 77/90 compilers.

• Trace: A trace-based front end which uses the tt6
PowerPC instruction trace format[3] generated by the
amber tracegenerator[2]. A tt6 file contains a record
of each instruction executed by the target program.
This record contains the opcode, registers, immediate
and any memory addresses accessed or the branch tar-
get. The Trace front end also supports limited spec-
ulative execution. Before the simulation begins, the
trace is scanned and the address of each instruction,
along with that instruction’s record, is recorded. If
the back end mispredicts a branch and requests an in-

1lvx, stvx, vspltw, cmpequh[.], andvand instructions

struction at the wrong address, the front end will re-
turnthe instruction at the incorrect address, as long as
that address is executed somewhere in the trace. Be-
cause most mispredicts still return a valid instruction
address, the back end is able to simulate the effect of
the speculatively executed instructions.

3.2. Back End

The back end is responsible for modeling the hardware
of the system. Specifically, it consumes instructions and
threads generated by the front end and determines how long
it would take for the specified hardware to execute them.
The back end is composed of many differentEnkidu com-
ponents (see Section3.4). These components represent phys-
ical components such as processors, networks, memory con-
trollers, DRAM chips, or other system elements. Compo-
nents can communicate throughEnkidu’s discrete event
message passing system.

Several back end components are designed to interact
(Figure2). Current components include:

• “Level 0” Basic Processor:Execution-only, no tim-
ing. Similar tosim-fast.

• PIM Chip: a Processor-in-memory(PIM) chip that
contains one or more PIM processors. It also models
instruction caches, on-chip DRAM or SRAM mem-
ory, inter- and intra-chip communication between PIM
processors, and optional connection to a backing mem-
ory controller.

• PIM Processor:A simple processor, suitable for com-
bination with memory. Models a multithreaded in-
order pipeline without branch prediction. Can be con-
figured for different pipeline lengths, forwarding, and
thread scheduling mechanisms. Supports non-local
memory accesses by remote instructions or thread mi-
gration.



Processor

Conventional
Processor

SMP
Processor

NICPIM
processor

PIM NIC Conventional
NIC

DMA Engine

Network

Enkidu
Component

Memory
Controller

DRAM

Optional

Figure 2. Some back end component classes and their relationships

• Conventional Processor:A conventional, out-of-order,
multi-issue processor based on the model in Simple-
Scalar’ssim-outorder. It can use SimpleScalar’s
memory model or can connect to a memory controller
component. It can be configured to handle multiple
threads with simple run-to-completion scheduling.

• SMP Processor: An SMP variant of the conventional
processor with a simple snooping coherency policy.

• Memory Controller: A simple memory controller
model which simulates bus contention, bandwidth con-
straints, communication latency, and DRAM inter-
leaving.

• DRAM: A model of a DRAM chip with a config-
urable number of resizable DRAM banks. Open row
(open page) latency and contention is modeled, and
the number of open rows is adjustable.

• Conventional NIC: a NIC controlled by a conven-
tional out-of-order processor. It also models a sep-
arate NIC bus, local memory and a Direct Memory
Acess (DMA) component.

• PIM NIC: Similar to conventional NIC, but using a
PIM Chip instead of a conventional processor.

• Simple Network: A simple network model connect-
ing NICs on different systems. Latency and band-
width effects are modeled, but no topology.

• Mesh Network: A configurable mesh topology net-
work with detailed routers and link components. Routers
modeled internal buffers and contentions.

3.3. Interface

They Processor/Thread interface is the key bridge
between the front end and back end. This interface defines
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Figure 3. Processor/Thread Interface

three abstract classes:processor, thread, and in-
struction. A processor is a back end component
which can executeinstructions belonging to one or
more threads. Examples of processors include the
PIM Processor and the Conventional processor. Each front
end defines athread class andinstruction class.

The front end simulates how the program executes from
a software perspective — it ignores hardware and timing
details and just looks at how the state of its registers and
memory is modified by theinstructions. The back end
processor simulates how the program executes from a
hardware perspective — it ignores the specifics of what val-
ues are written where and focuses on modeling the timing
details of which components are accessed, how long mem-
ory transactions take, and other microarchitectural details.
The back endprocessor provides access to a storage area
for the front end to store memory and register values. This
allows multiple threads to interact on the same data.

The execution of an instruction demonstrating the typical
interaction betweenprocessor andthread is shown in
Figure3. In (a), theprocessor begins by requesting an



instruction from thethread. This request can be for an
instruction at a given address, or can simply be for “the next
instruction to execute.”

Theprocessor simulates the execution of the instruc-
tion in three stages: fetch, issue, and commit. These stages
can be performed at different cycles, and they can be over-
lapped with other instructions. First, theprocessor calls
thefetch() method on the instruction (b). Thefetch()
method may call upon theprocessor to access simula-
tor state, usually to access the instruction memory. After
fetch() has completed, theprocessor can query the
instruction for information required to model instruc-
tion timing and resource use.

A similar process is performed for theissue() stage(c)
andcommit()(d) stages. The processor calls the function
which may invoke processor functions. After theinstruction
member function completes, the processor can query the
instruction to find characteristics such as which func-
tional unit(s) it requires, its register dependencies, and any
exception.

Lastly, theprocessor directs thethread to retire the
instruction(e). If the processor needs to rollback
the execution of one or moreinstructions (perhaps
due to an exception) it may due so with thethread class’
squash() function.

3.3.1. Speculative Execution

To model many processors accurately, speculative execu-
tion must be simulated. To accommodate this, the SST
uses a copy-on-write policy towards memory and register
state. If aprocessor detects the start of speculative ex-
ecution, it informs thethread. The thread then treats fu-
turecommit()s as speculative. Any state changes caused
by thesecommit()s are written to a copy of the origi-
nal state. When the speculation is over thethread and
processor discard the speculative state copies.

3.4. Hybrid simulation

Modern processors can be represented as a series of buf-
fers which store instructions and data, separated by logic
which acts upon those instructions. Data flows from buffer
to buffer according to a strict centralized clock. For archi-
tectural simulation, it is possible to say that all events take
place in synchronization with this clock. Processors often
have dozens of instructions in various stages of execution
during each processor clock cycle. As a result, several tran-
sition events can be expected to occur each cycle.

Parallel architectures often have two distinct types of tran-
sitions. Transitions within a processor occur several times a
cycle. Additionally, there will be infrequent inter-processor
communication events. For this reason a hybrid simulation

Table 1. Default SimpleScalar Configuration for
validation

Parameter Value

issue width 4
commit width 4
ialu 4
imult 1
memports 2
bpred bimod
mem lat 18/2

framework which combines synchronous time-stepping and
discreteevent-passing provides the most flexibility and low-
est overhead for parallel architectural simulation.

The Structural Simulation Toolkit is built aroundEnkidu,
a hybrid simulation framework. InEnkidu, component
objects represent each physical component of the system.
Eachcomponent is evaluated every clock cycle and ad-
vances its internal state. In addition,components can
communicate by passing event messages to each other in an
asynchronous manner. Optimizing for the common case in
architectural simulation,Enkidu provides low-overhead
synchronous time-stepping to handle the bulk of the func-
tionality. For the infrequent communication betweencomponents,
the discrete event mechanism is provided.

4. Validation

A simulation framework must be both correct and robust.
Correctness requires that the simulator produce results that
match a known target. In this case, SimpleScalar is used as
one of the back ends, and so SimpleScalar provides a point
of comparison. Robustness, in the sense that the simulator
provides the functionality needed to simulate a wide vari-
ety of systems, was a primary goal of this effort. To verify
robustness, a number of system and processor architectures
were simulated.

4.1. Correctness

Validation against SimpleScalar used the PISA ISA front
end and the default configuration for the SimpleScalar back
end (Table1). Validation used several applications:

• speedTest: A simple program consisting of a linked
list creation and traversal (a memory intensive op-
eration) and a matrix-matrix multiply (a cache and
floating-point unit intensive operation) was used. Sev-
eral system calls also test underlying system libraries.



• anagram: An anagram finder from the Instructor
Benchmarks[5] provided on the SimpleScalar web-
siteas a precompiled PISA executable. It uses a dic-
tionary of 24,474 words.

• go: A go-playing benchmark program.

The output of these simulations was checked against known
correct values to show correct execution of the program. All
outputs were correct.

To show correct simulation, simulation statistics were
compared. The total number of instructions committed, ex-
ecution cycles, branch prediction hit rate, and cache hit rate
for L1s, L2, and TLBs were compared. Some known small
discrepancies exist between the SST and SimpleScalar. These
include small differences in how certain system calls are
handled and stack layout details. However, these differences
prove to be minor (Table2). For all measurements, the SST
was within a fraction of a percent.

4.2. Robustness

Demonstrating the robustness of the simulator framework
was accomplished by implementing a number of system and
processor architectures on the back end and a number of
front ends.

• Initial Framework : The initial framework included
the processor/thread interface, basic configu-
ration utilities, a PISA-based front end and a sim-
ple multiprocessor back end. The back end modeled
thread migration and remote accesses between pro-
cessors, but not timing.

• PIM: A simple Processor-in-Memory (PIM) model
includeing PIM chips and network, and thread migra-
tion (see Section3.2).

• Dynamic PowerPC Front End: A front end for the
PowerPC ISA was developed, including a dynamic
loader for the MachO executable format, used on Ma-
cOS. This allowed the use of a wider range of modern
compilers than the existing PISA toolchain. To simu-
late large “real-world” scientific applications, it is of-
ten necessary to support dynamically loaded librari-
esThe MacOS X dynamic link editor (dyld), was
modified to provide dynamic library support. This
allowed the simulation of large applications such as
CTH[9], a 500,000 line mixed FORTRAN/C/C++ shock
physics application with adaptive mesh refinement and
visualization capabilities.

• Altivec: A subset of the Altivec vector instruction set
for PowerPC was added.

• Simple Scalar:sim-outorder was integrated with
the simulator to simulate conventional out of order
processors (see Section3.2).

• NIC: A programmable NIC (see Section3.2) and com-
ponentswith a simple network model. A subset of
the Message Passing Interface[10] (MPI) was imple-
mentedand tested on this architecture.

• PIM NIC: The previously constructed NIC was gen-
eralized to allow a Processor-in-Memory as its con-
troller.

• Associative memory structure:A specialized asso-
ciative memory structure to accelerate MPI was inte-
grated onto the NIC. The parameters for this structure
were based upon more detailed VHDL simulation.

• SMP:BasicSMP functionality[14] was added to al-
low simulation of multiple conventional processors
sharing a common snooping bus.

• Trace-based Front end:A front end which accepts
PowerPC instruction traces in the tt6 format was con-
structed. This allowed simulation of programs which
were difficult or impossible to compile for other front
ends, or of selected sections of a program too large to
simulate in its entirety.

• Mesh Network: A configurable network was added
to allow more scalable and detailed MPP simulations.

5. Results

A simulation infrastructure has two metrics by which it
should be evaluated: the speed of simulation and the ease
with which it can be used for its purpose. The speed of sim-
ulation is a straightforward measurement and is compared
below to other architectural simulators. In contrast, “ease
of use” is a much more difficult metric to evaluate. To at-
tempt to characterize this metric, the “effort” in terms of
both lines of code and days to create that code was captured
from multiple implementations of architectural features and
is presented below.

5.1. Performance

To measure the performance of the simulator, thespeedTest
program from Section4.1was used. Figure4 compares the
performanceof the Structural Simulation Toolkit with both
SimpleScalar andsimg4, a trace-based simulator for the
PowerPC G4 (7400). The Structural Simulation Toolkit trace-
based front end uses the same format as thesimg4 simu-
lator, but the back ends are different. Above, the average



Table 2. Simulation correctness validation: Differences
Benchmark Instructions Branch Pred. L1 Hit Rate L2 Hit Rate TLB Hit Rate
speedTest < 0.4% < 0.2% < 0.2% < 0.3% < 0.3%
anagram ≈ 0 < 0.2% < 0.3% < 0.3% < 0.1%
go < 0.3% < 0.3% < 0.1% < 0.5% < 0.1%
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Figure 4. Simulator Comparison: the Structural
Simulation Toolkit incurs only a small overhead
against SimpleScalar.

number of host processor cycles required to complete a sim-
ulatedcycle are shown.

Comparing the SST-PISA data point to the SimpleScalar
data point indicates that the modularity of the framework
adds approximately 10% overhead. This is a relatively low
overhead for separating the instruction decode from the mi-
croarchitectural simulation. Using the PowerPC front end
increases the overhead slightly per simulated cycle and the
trace based front end is much heavier weight2

Moving to the lower half of Figure4, gives an “instruc-
tion to instruction” ratio between simulated and host in-
structions. This effectively divides the data on the upper
graph by the IPC achieved on the simulated platform. The
performance relationship between the PISA based Simple-
Scalar and the PISA front end of the Structural Simulation
Toolkit remains constant; however, the PPC front end and
trace based front end show significant relative gains. This
occurs because the PPC and trace based front ends use a
newer compiler (gcc 3.3) rather than the older compiler (gcc
2.7.2) available for PISA.

The same benchmark was used to compare the three dif-
ferent front ends with a variety of back end configurations.
Figure 5 shows the impact of the interaction between the
ISA and the microarchitecture. First, SimpleScalar’s main
memory model was replaced with a more complex model
including a memory controller and DRAM chips. This in-
flicted a very small overhead (0.5% - 1.7%), even though
the the new memory model requires the addition of sev-
eral components and considerable event messaging. This
small cost validates the low overhead of theEnkidu frame-
work. The front ends were also compared simulating sev-
eral PIM configurations in which the number of processors
on a chip was varied. Because the benchmark program
is single threaded, each processor is assigned a region of
memory to “own”. Whenever the program requires mem-
ory owned by a different processor it must emit a remote in-
struction. Thus, adding extra processors decreases the sim-
ulator efficiency because the extra capacity is not used and
additional communication overhead is required.

Models of multiple system level configurations were also
benchmarked and the results are shown in Figure6. A 2
processorSMP system was tested with the SPLASH2 non-
contiguous LU kernel. The other configurations tested con-

2Thisis currently believed to be a difference in the level of optimization
effort applied to the trace based front end.
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Figure 5. Front End Comparison:
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Figure 6. Multi-processor configurations Com-
parison: All using PPC front end.

ventional processors with programmable NICs attached by
asimple network. A small MPI benchmark was constructed
that posts several 16K message buffers and then measures
the latency of MPI message matching. The back end con-
figurations all used an 8-way out of order processor for the
main processors. The NIC’s processor was modeled as a 2-
way conventional processor, or as one or two PIM proces-
sors. The relatively high cost per cycle for the NIC-based
systems is because the NIC processor was running at 1/4
of the clock rate of the main processor. These are much
cheaper operations in terms of host cycles per simulated in-
struction.

Another important performance measurement is the amount
of simulation overhead incurred by a framework. Overhead
becomes especially important when the number of compo-
nents is high (such as a highly parallel architecture) or if
components are relatively simple. Such simulators may be-
come dominated by framework overhead.

Overhead can be measured by the number of instructions
the host processor must execute for each simulated compo-
nent for each simulated clock cycle. Such measurements of
various simulators [28] reveal notable contrasts between the
overheads of different models of computation. The num-



ber of host instructions per component per simulated cycle
canvary from 57 for lightweight hybrid frameworks such as
Enkidu, to 956 for more complex frameworks such as Sys-
temC — over a 16 fold increase. Pure event-driven frame-
works like YACSIM[18] fall somewhere between with 297.
Experimentsindicate that these overhead instructions exe-
cute with a IPC between 0.8 and 1.2 on modern processors.

Put another way, a simulation of 10 components with
an overhead of 1000 instructions, executing on a 1Ghz ma-
chine with an IPC of 1.0 would be limited to 100,000 simu-
lated cycles per real-world second. Whereas a similar setup
with an overhead of 60 instructions would be capable of
over 1,600,000 cycles per second.

The Structural Simulation Toolkit, built onEnkidu, pro-
vides a very low overhead by optimizing for the common
case for architectural simulation.

5.2. Modeling Costs

The SST is flexible enough to simulate a range of archi-
tectural configurations, but the important metric is how hard
it is to create new architectural configurations. New compo-
nents have been added to the simulator to support a number
of projects and the effort level to add those components is
captured in Table3. Many of the smaller projects (ISA ex-
tensions,new front ends) took only a handful of days to
complete. Even the addition of large system components
such as integrating SimpleScalar’s [7] out-of-order proces-
sormodel or adding a NIC and simple network model took
less than two weeks.

A primary features of the Structural Simulation Toolkit is
the ability to add new front and back ends. Adding a PIM
back end complete with communication capabilities and the
unique memory model of a PIM took approximately two
weeks and slightly over 2000 lines of code. Adding the
PowerPC front end required nearly 15,000 lines of code,
but the vast majority was in header files enumerating in-
struction semantics. Indeed, over half of that is the “big
case statement” defining the ISA. Similarly, the highly com-
plex sim-outorder component of SimpleScalar was in-
tegrated in approximately two weeks. This indicates that
it is reasonable to integrate existing simulation capabilities
into the framework.

The most important capability of the SST is the ability
to model multiprocessor systems. A number of examples
tested this capability. A two processor basic SMP function-
ality was implemented (using SimpleScalar as the back end)
with a snoopy cache coherency protocol in only two days
and with only 320 lines of code. A more complex system
connecting two processors through a pair of conventional
network interface models (including details such as an em-
bedded PowerPC processor, DMA engines, and a simple
network model) with 11 days of effort. This was later ex-

tended to use a PIM processor with an additional 7 days of
effort (including an updated MPI implementation) and only
686 lines of code. Additionally, a novel hardware feature to
accelerate list processing was integrated in a single day.

6. Conclusions

The Structural Simulation Toolkit framework provides a
flexible modeling environment for the independent explo-
ration of programming model, ISA, and microarchitectural
details. Multiple independent front ends and back ends have
been developed that illustrate the feasibility of this approach
and that provide a solid foundation for further research. The
overhead of the simulator relative to a raw microarchitec-
tural simulator such as SimpleScalar is only 10%, which is
an acceptable trade-off for the flexibility offered. Further-
more, the Structural Simulation Toolkit employs a hybrid
simulation model to enable low overhead simulation of par-
allel systems where processor, memory, and communication
systems must interact. Multiple examples of these paral-
lel systems (ranging from an SMP to a pair of independent
nodes coupled with a standard network interface) were built
to evaluate both the ease of use and performance of the sim-
ulator. In each case, the extensions were found to require a
minimal level of effort while still delivering excellent per-
formance.

7. Future Work

A number of enhancements are being developed for the
Structural Simulation Toolkit. A key focus will be more
back-end support including such things as chip multi-pro-
cessing (CMP) and an improved network system. On the
front-end, a synthetic workload generator will be added to
support faster exploration of parallel system issues. The
biggest enhancement in development is support for a paral-
lel version of the system to explore massively parallel sys-
tem configurations.

Current work is underway to port a full version of MPICH
to the simulator. This will allow simulation of a wide range
of scientific codes as well as facilitate MPI research.
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