
The Structural Simulation Toolkit: A Tool for Exploring

Parallel Architectures and Applications

Arun Rodrigues† Richard Murphy† Peter Kogge⋆

Keith Underwood†

University of Notre Dame⋆ Sandia National Lab∗ †
Computer Science and Engineering PO Box 5800

384 Fitzpatrick Hall MS-1110
Notre Dame, IN 46545 Albuquerque, NM 87185-1110

kogge@nd.edu, {afrodri,rcmurph,kdunder}@sandia.gov

Abstract

Parallel and multithreaded architectures and execution models are poised to dominate comput-

ing. This growing complexity makes system design ever more challenging and has led to a drive for

innovation in systems where the impact of innovation is hard to predict. The Structural Simulation

Toolkit (SST) was developed to explore novel systems where the processor, memory and commu-

nications system interact with the programming model. It is designed to be an open framework

that unifies hybrid discrete event simulation and time-stepping simulation to enable both detailed

and abstracted simulations. The focus on parallel and multithreaded systems has been validated

through experimentation with models of everything from processing-in-memory to conventional

microprocessors connected by conventional network interfaces running a variety of programming

models such as MPI and OpenMP.

∗Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United
States Department of Energy under contract DE-AC04-94AL85000.

SAND2007-0044C



1. Introduction and Motivation

Solving the world’s most demanding computational problemswill requires massively parallel

systems and programming models capable of exploiting orders of magnitude more parallelism than

is currently possible. Current trends indicate that parallel multithreaded computers will become

widespread at all levels of computing. With these new computers comes a widespread push for

architectural and programming model innovation.

As these systems grow in complexity, modeling them in their entirety becomes more difficult

because the community lacks the simulation environment needed to perform such an ambitious

simulation. Instead, state of the art practice simulates components in isolation under a set of con-

ditions that are believed to be representative. Unfortunately, each generation of machines makes

this methodology less tenable.

The problem is compounded by architectural innovations. Adding novel components to a system

(vector processors, processing-in-memory, advanced on-chip networks) can have impacts which

are not well understood. This lack of understanding limits the adoption of new architectural com-

ponents.

Similarly, novel parallel programming models and applications suffer from a lack of simulation

frameworks which allow the community to better understand the tradeoffs imposed by new archi-

tectures. Thus, new programming models are explored on existing hardware, rather than used to

gain insight into new machines. This leads to a “chicken-and-egg” problem — parallel applica-

tions lack the architectural innovations they need to perform well, and novel architecture lack the

advanced programming models they require.

What is needed is a simulation infrastructure that will support answering questions about system

performance for new architectures and programming models.If a novel architectural or microar-

chitectural feature accelerates an individual node by a factor of 10, would the system continue to

scale efficiently? How will system performance change if we change the network topology? Can

programming models express sufficient parallelism to keep thousands of processors with hundreds

DRAFT 2



of cores with dozens of threads busy? How can hardware synchronization improve multithreaded

application performance?

Novel parallel systems are much more complex than can be modeled conveniently by existing

research tools. Processing components can include microprocessors, vector processors, CMPs,

Processing-In-Memory (PIM), and stream based architectures. Large scale machines are created

by connecting processors through network interface chips (which tend to be complex systems

on chip designs) to routers that support a variety of topologies. While these components can be

modeled in isolation, even the simulation of small system scale integration tends to require a “one-

of-a-kind” effort.

The Structural Simulation Toolkit (SST) discussed in this paper was developed to help solve

these problems, and to allow exploration of highly concurrent systems where the ISA, microarchi-

tecture, network, and multi-node system issues need to be explored together. SST is modular and

provides the ability to modify one characteristic at a time without having to rip up the rest, or mod-

ify support tools such as compilers until necessary or appropriate. The key to this is the explicit

separation of program and instruction interpretation (the“front end”) from instruction and mi-

croarchitectural timing (the “back end”), combined with a hybrid discrete event and time-stepping

simulation framework. The interface to the front end supports multiple program formats such as

instruction traces and compiled executables. The back end interface supports multiple levels of

detail, from simple functional simulation to models of collections of heterogeneous processors.

Introduction of new front or back end components can be done independently of the other. Crit-

ically, the framework is designed with an eye towards parallelization in the next generation, to

allow for extremely large scale system simulation.

Experiments to date have used this simulation structure to explore software and hardware tech-

niques related to processing in memory, novel NIC architectures to support MPI communication,

vector processing, and has recently been equipped with a three dimensional router model. The

typical initial experimental costs have been in the range ofa handful of days of development time

and results in simulation performance comparable to the state of the art. Together, this indicates

DRAFT 3



that such a structure can have a significant effect on future architectural research.

2. Related Work

A variety of simulators and simulation strategies are used in computer architecture, providing a

range of features and functionality. One goal of the Structural Simulation Toolkit is to build upon

the success of these previous works.

Many architectural simulators have been written to exploredesign issues on the processor or

system level. These simulators represent programs by execution-based, trace-based, or stochastic

mechanisms. While they vary in level of detail, configurability, and focus, the SST’s focus on

system-level interactions in MPP systems that include novel architectural components is unique.

In the case of an MPP, the scale of the system leads to a more loosely coupled memory hierarchy

design (in fact, many MPPs allow only message-passing basedcommunication). In addition, MPPs

have a complex software stack (e.g., an MPI communication layer) over complex interconnection

hardware that must be optimized in simulation in conjunction with the overall system design.

SimpleScalar[8] is one of the most commonly used architectural simulation toolkits. It includes

a number of execution-based simulators, ranging from simple execution to cache simulation to

full simulation of an out-of-order processor and memory hierarchy (sim-outorder). A num-

ber of processor parameters can be adjusted, such as issue width, functional units, internal queue

lengths, and cache characteristics. Though SimpleScalar only models a single conventional proces-

sor, several derivatives have extended its functionality.The SImulator for Multithreaded Computer

Architecture [15] (SIMCA) was developed to explore multi-threaded architectures by augment-

ing the PISA ISA to include instructions for thread creationand control. Another derivative,

MP simplesim[20] presented multiprocessor cache simulationcapabilities. However, this simu-

lator only modeled cache interactions and did not attempt tomodel detailed timing. Other multi-

processor simulators include Solo[11], RSIM[16], Tango[12], and MINT[34].

simulator[21] was created to provide a flexible environmentthat addresses the needs of CMP and

DRAFT 4



SMP simulation and memory hierarchy design. GEMS also decouples the functional portion (ISA

interpretation, etc.) from the timing and microarchitectural simulation to simplify timing design.

In contrast, SST targets issues in CMP, SMP, and MPP systems where a node is a heterogeneous

collection of processors, memories, NICs, and routers.

Other simulators have been developed to enable specific functionality. For example, SimOS[14],

Talisman[7], and ML-RSIM[30] are capable of supporting theexecution of an OS. SPIM[18] was

developed as a teaching tool for exploring the MIPS ISA. Others, such assimg4[23] andsimg5,

were developed to model a specific processor (the PowerPC 7400 and 970) in detail. Both of these

simulators are trace-based, and provide a high level of detail, but lack a high degree of parame-

terization. Additionally, they do not attempt to simulate afull system with multiple processors or

network.

The proprietary ASIM[9] performance model framework is comprised of a set of modules which

can be composed to form different architectures. A novel feature of ASIM is the partial separation

of the performance model for system components from the program execution. Other modular

simulation efforts include the Liberty Simulation Environment[33], which has developed a num-

ber of modules in its own LSS language, and Microlib which provides a number of modules in

SystemC[1]. Both provide detailed simulation, but lack an abstraction between hardware details

and program execution. The message PAssing computeR SIMulator, PARSIM[31] was developed

to explore algorithms and network topologies for parallel computers. It models program execution

as a generalized algorithm divided into computation and communication. Processor speed and

network characteristics can be parameterized, but no attempt is made to model the internals of the

processor.

Some simulators focus on network modeling, such as DaSSF[19] and GTNetS[24]. These sim-

ulators can simulate large networks in great detail, allowing for a variety of different topologies,

protocols, and link characteristics. However, these simulators do not attempt to model the exact

execution of a program or the internal architecture of a system. Instead program communication

patterns are generated stochastically.

DRAFT 5



Front End

Enkidu

Network

Memory
Controller

Hardware
Special

Cache

DRAM

P
rocessor/T

hread
Interface

PPC FE

PISA FE

Trace FE

Mach−O PPC
Binary

ELF PISA
Binary

Instruction
Trace

PIM

sim−outorder

NIC Proc

Back End

Figure 1. Simulator Framework and Component

3. Framework

Structural Simulation Toolkitis an architectural simulator implemented in about 55,000 lines of

C++. It is composed of four primary elements (see Figure 1): theFront Ends, which model the

execution of a program; theBack Ends, which model architectural components of the system; the

Processor/Thread Interface, which allows the front and back ends to interact; andEnkidu[27],

a component-based discrete event and synchronous simulation framework that coordinates com-

munication between components and models the passage of time. To provide modularity and

reconfigurability, it is possible to select a front end and choose a variety of back end components

at run time. This allows the user to explore a variety of hardware configurations while using the

execution model best suited to the available toolset.

3.1. Front End

The front end is responsible for translating a binary executable into a stream of instruction and

thread objects to the back end (see Section 3.2) and for managing user state. This begins with

a loader that translates from binary to simulated memory image. Once simulation begins, the

front end determines how each instruction modifies program state (e.g. memory and registers)

and provides the instruction to the back end. The state management machinery performs a similar

function to SimpleScalar’s[8]ss.def file, or SPIM’s[18]run.c. Currently, three front ends can

be selected at run-time.

DRAFT 6



• PISA: an execution-based front end which uses the PISA ISA and theELF executable for-

mat. The PISA ISA is augmented to provide functionality required to access experimental

hardware. New instructions were added to explore low-cost thread spawning and different

synchronization primitives, to allow a processor to communicate with a subordinate proces-

sor on a NIC, to access specialized hardware. The PISA front end allows use of modified

versions of thegcc or g++ compilers version 2.7.2.

• PPC: an execution-based front end which uses the PowerPC ISA[22] and the MachO[4]

executable format. This PowerPC ISA is augmented like the PISA ISA. It also includes a

small subset1 of the AltiVec vector extensions. The MachO format is the standard format

for MacOS X executables and allows the use of binaries created by a number of modern

compilers. It has been tested withgcc andg++ versions 3.1, 3.3, and 4.0.1, g77 version

3.4, IBM XLF 8.1 FORTRAN 77/90 compilers, and Absoft 8.0 FORTRAN 77/90 compilers.

• Trace: a trace-based front end which uses the tt6 PowerPC instruction trace format[3] gener-

ated by theamber trace generator[2]. A tt6 file records data about each instruction executed

by the target program. The Trace front end supports limited speculative execution by pre-

scanning the trace and recording the address of each instruction along with its instruction

record. If the back end mispredicts a branch, the front end will return the instruction at

the mispredicted address as long as that address is executedsomewhere in the trace. Most

mispredicts return a valid instruction address enabling the back end to simulate the effect of

speculative execution.

An important factor in the SST front end is thatthreads are first-class objects. Rather than

tacking on parallelism to a simulator, multithreading and concurrency is an integral part in how

programs are viewed and how they interact with hardware.

1lvx, stvx, vspltw, cmpequh[.], andvand instructions

DRAFT 7



3.2. Back End

The back end is responsible for modeling processor hardware. It consumes instructions and

threads generated by the front end and determines how long itwould take to execute them. The

back end is composed of multipleEnkidu components (see Section 3.3) that represent such things

as processors, networks, memory controllers, and DRAM chips. Components can communicate

throughEnkidu’s discrete event message passing system.

Current components include:

• Basic Multithreaded Processor: execution-only, no timing. Similar tosim-fast.

• PIM Chip : a Processor-in-memory(PIM) chip that contains one or moremultithreaded

processors. It models instruction caches, on-chip DRAM or SRAM memory, inter- and

intra-chip communication between PIM processors, and an optional connection to a backing

memory controller.

• MT Processor: a multithreaded in-order pipeline without branch prediction. Can be con-

figured for different pipeline lengths, forwarding, and thread scheduling mechanisms. It

supports non-local memory accesses by remote instructionsor thread migration. These pro-

cessors can be connected to caches and to each other by a variety of on-chip networks.

• Conventional Processor: a conventional, out-of-order, multi-issue processor based on the

model in SimpleScalar’ssim-outorder. It can use SimpleScalar’s memory model or can

connect to a memory controller component. Additionally, a basic prefetcher has been added.

It can be configured to handle multiple threads with simple run-to-completion scheduling.

• CMP Processor: a CMP or SMP variant of the conventional processor with a simple snoop-

ing coherency policy.

• Memory Controller : a simple memory controller model which simulates multiplechannels,

bus contention, bandwidth constraints, communication latency, and DRAM interleaving.

DRAFT 8



• DRAM : A model of a DRAM chip with a configurable number of resizableDRAM banks.

Open row (open page) latency and contention is modeled, and the number of open rows is

adjustable.

• Network components: a NIC containing a bus, local memory, a Direct Memory Access

(DMA) component, and processor. The NIC processor can be a conventional core or a mul-

tithreaded processor. This NIC can be connected to a configurable mesh topology network

with detailed routers (including buffers and contention).

3.3. Hybrid simulation

Modern processors can be represented as a series of buffers which store instructions and data,

separated by logic which acts upon those instructions. Dataflows from buffer to buffer according

to a strict centralized clock. For architectural simulation, it is possible to say that all events take

place in synchronization with this clock. Processors oftenhave dozens of instructions in various

stages of execution during each processor clock cycle. As a result, several transition events can be

expected to occur each cycle.

Parallel architectures often have two distinct types of transitions. Transitions within a processor

occur several times a cycle. Additionally, there will be infrequent inter-processor communication

events. For this reason a hybrid simulation framework whichcombines synchronous time-stepping

and discrete event-passing provides the most flexibility and lowest overhead for parallel architec-

tural simulation.

The Structural Simulation Toolkit is built aroundEnkidu, a hybrid simulation framework. In

Enkidu, component objects represent each physical component of the system. Eachcompo-

nent is evaluated every clock cycle and advances its internal state. In addition,components can

communicate by passing event messages to each other in an asynchronous manner. Multiple clocks

are provided to allow differentcomponent to operate at different speeds. This optimizes for the

common case in architectural simulation by providing low-overhead synchronous time-stepping to

DRAFT 9



handle the bulk of the functionality and a discrete event mechanism for component interactions.

4. Programming Models

A key motivation for the SST is to allow exploration of multiple programming models. Es-

pecially programming models which benefit from unique hardware features such as support for

multithreading, fast synchronization, and specialized hardware. This is accomplished by allowing

multiple front-ends to permit a variety of compilers and trace-gathering tools and by extending the

ISAs of some of the front-ends to access special hardware features.

4.1. Manual Multithreading

Explicit, hardware supported multithreading is supportedby exposing several multithreaded

primitives. The “cost” of executing these primitives is determined by the back-end in order to

model differing levels of hardware efficiency in supportingmultithreading.

The exposed primitives include: mechanisms to create and destroy threads, both with and with-

out stacks; Fast allocation of local memory in NUMA architectures; fast synchronization mech-

anisms such as Full/Empty Bits and reserved loads/stores; thread migration controls; and thread

scheduling controls. These primitives can be used by themselves, or accessed through a high-level

library such aspthreads. A modified version oflibc is provided which utilizes these primi-

tives to implementpthreads and provide other library functionality in a multithreadedcontext

(e.g.malloc).

These multithreading primitives have been used to create a number of multithreaded bench-

marks and applications and explore their behavior on a variety of multithreaded and multi-core

architectures. For example, a parallel graph search algorithm was simulated to study the effects of

memory latency and bandwidth and different thread semantics.

4.2. OpenMP

Building on thepthreads library, support for the Omni OpenMP compiler[10] is provided.

DRAFT 10



OpenMP support was used to compile the NAS Parallel benchmarks[6]. These, combined with

hand-coded SPLASH2 benchmarks, were used to evaluate scalable synchronization techniques for

multithreaded architectures.

4.3. Threadlets

A novel mechanism to exploit fine-grained parallelism is to use very small threads or “thread-

lets.” These threadlets may only be a handful of instructions long, and would require a high level

of support from the hardware for thread creation and synchronization.

The potential of threadlets was examined using the trace-based front-end. Instruction traces

from a number of applications were pre-processed to identify threadlets and insert synchronization

instructions. A multithreaded processor model was then used to evaluate the performance potential.

4.4. MPI

Two implementations of the Message Passing Interface (MPI)have been used with the SST.

The first is a subset of the MPI API which concentrates on NIC offload of MPI processing. This

MPI has been modified to explore the effects of multithreading, vector processing, and multi-core

architectures on MPI message processing[29, 32]. Also, theMPICH MPI implementation has been

ported to the SST, allowing a complete set of functionality.

Support for MPI allows a wide variety of applications to be run and also enables examining

how MPI might be extended to take advantage of novel architectures. For example, MPI seman-

tics were extended to use Full/Empty Bits to allow a very fine-grained overlap of communication

and computation and the performance impact on a subset of theNAS Parallel Benchmarks was

examined[28].

4.5. Explicit Offload

Another programming model is explicit off-load of computation into specialized hardware. Uti-

lizing extensions to the front-end, a thread can interact with hardware models of other processors.

DRAFT 11



This can range from launching a full thread of execution to anattached specialized processor such

as a NIC or processor-in-memory, or feeding data into a simple component to perform a specific

such as a content-addressable memory or model of an FPGA.

5. Validation

Correctness validation requires that the simulator produce results that match a known target. In

this case, SimpleScalar is used as one of the back ends, and soSimpleScalar provides a point of

comparison.

Validation against SimpleScalar used the PISA ISA front endand a configuration for the Sim-

pleScalar back end based on a 4-way OOO processor. Validation used three applications:speed-

Test, a memory, math, and cache intensive benchmark which also tests several system libraries;

anagram, an anagram finder from the SimpleScalar Instructor Benchmarks[5]; andgo, A go-

playing benchmark program.

The output of these simulations was checked against known correct values to show correct exe-

cution of the program. All outputs were correct. Also, totalnumber of instructions committed,

execution cycles, branch prediction hit rate, and cache hitrate for L1s, L2, and TLBs were com-

pared. Some known small discrepancies exist between the SSTand SimpleScalar. These include

small differences in how certain system calls are handled and stack layout details. However, these

differences prove to be minor. For all measurements, the SSTwas within a fraction of a percent.

6. Results

A simulation infrastructure has two metrics by which it should be evaluated: the speed of sim-

ulation and the ease with which it can be used for its purpose.The speed of simulation is a

straightforward measurement and is compared below to otherarchitectural simulators. In contrast,

“ease of use” is a much more difficult metric to evaluate. To attempt to characterize this metric,

the “effort” in terms of both lines of code and days to create that code was captured from multiple

DRAFT 12



SimpleScalar SimG4 SST−PISA SST−PPC SST−Trace
0

1000

2000

3000

4000

5000

6000

7000

8000

H
os

t C
yc

le
s 

/ S
im

ul
at

ed
 C

yc
le

SimpleScalar SimG4 SST−PISA SST−PPC SST−Trace
0

1000

2000

3000

4000

5000

6000

7000

H
os

t C
yc

le
s 

/ S
im

ul
at

ed
 In

st
ru

ct
io

n

Figure 2. Simulator Comparison: the Structural Simulation Toolkit incurs only a small
overhead against SimpleScalar.

implementations of architectural features and is presented below.

6.1. Performance

To measure the performance of the simulator, thespeedTest program from Section 5 was

used. Figure 2 compares the performance of the Structural Simulation Toolkit with both Sim-

pleScalar andsimg4, a trace-based simulator for the PowerPC G4 (7400). The Structural Simula-

tion Toolkit trace-based front end uses the same format as thesimg4 simulator, but the back ends

are different. First, the average number of host processor cycles required to complete a simulated

cycle are shown.

Comparing the SST-PISA data point to the SimpleScalar data point indicates that the modularity

of the framework adds approximately 10% overhead. This is a relatively low overhead for separat-

ing the instruction decode from the microarchitectural simulation. Using the PowerPC front end

increases the overhead slightly per simulated cycle and thetrace based front end is much heavier

weight2

Moving to the other half of Figure 2, gives an “instruction toinstruction” ratio between simulated

and host instructions. This effectively divides the data onthe upper graph by the IPC achieved on

2This is currently believed to be a difference in the level of optimization effort applied to the trace based front end.

DRAFT 13



SMP (2) 1 PIM NIC 2 PIM NIC Conv. NIC
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

H
os

t C
yc

le
s 

/ S
im

ul
at

ed
 C

yc
le

SMP (2) 1 PIM NIC 2 PIM NIC Conv. NIC
0

1000

2000

3000

4000

5000

6000

7000

H
os

t C
yc

le
s 

/ S
im

ul
at

ed
 In

st
ru

ct
io

n

Figure 3. Multi-processor configurations Comparison: All using PPC front end.

the simulated platform. The performance relationship between the PISA based SimpleScalar and

the PISA front end of the Structural Simulation Toolkit remains constant; however, the PPC front

end and trace based front end show significant relative gains. This occurs because the PPC and

trace based front ends use a newer compiler (gcc 3.3) rather than the older compiler (gcc 2.7.2)

available for PISA.

Models of multiple system level configurations were also benchmarked and the results are shown

in Figure 3. A 2 processor SMP system was tested with the SPLASH2 non-contiguous LU kernel.

The other configurations tested conventional processors with programmable NICs attached by a

simple network. A small MPI benchmark was constructed that posts several 16KB message buffers

and then measures the latency of MPI message matching. The back end configurations all used

an 8-way out of order processor for the main processors. The NIC’s processor was modeled as

a 2-way conventional processor, or as one or two PIM processors. The relatively high cost per

cycle for the NIC-based systems is because the NIC processorwas running at 1/4 of the clock rate

of the main processor. These are much cheaper operations in terms of host cycles per simulated

instruction.

Another important performance measurement is the amount ofsimulation overhead incurred by

a framework. Overhead becomes especially important when the number of components is high

(such as a highly parallel architecture) or if components are relatively simple. Such simulators

DRAFT 14



may become dominated by framework overhead.

Overhead can be measured by the number of instructions the host processor must execute for

each simulated component for each simulated clock cycle. Such measurements of various simula-

tors [26] reveal notable contrasts between the overheads ofdifferent models of computation. The

number of host instructions per component per simulated cycle can vary from 57 for lightweight

hybrid frameworks such asEnkidu, to 956 for more complex frameworks such as SystemC —

over a 16 fold increase. Pure event-driven frameworks like YACSIM[17] fall somewhere between

with 297. Experiments indicate that these overhead instructions execute with a IPC between 0.8

and 1.2 on modern processors.

Put another way, a simulation of 10 components with an overhead of 1000 instructions, exe-

cuting on a 1Ghz machine with an IPC of 1.0 would be limited to 100,000 simulated cycles per

real-world second. Whereas a similar setup with an overheadof 60 instructions would be capable

of over 1,600,000 cycles per second.

The Structural Simulation Toolkit, built onEnkidu, provides a very low overhead by optimiz-

ing for the common case for architectural simulation.

6.2. Modeling Costs

The SST is flexible enough to simulate a range of architectural configurations, but the important

metric is how hard it is to create new architectural configurations. New components have been

added to the simulator to support a number of projects and theeffort level to add those components

is captured in Table 1. Many of the smaller projects (ISA extensions, new front ends) took only

a handful of days to complete. Even the addition of large system components such as integrating

SimpleScalar’s [8] out-of-order processor model or addinga NIC and simple network model took

less than two weeks.

A primary features of the Structural Simulation Toolkit is the ability to add new front and back

ends. Adding a PIM back end complete with communication capabilities and the unique memory

model of a PIM took approximately two weeks and slightly over2000 lines of code. Adding the

DRAFT 15



Table 1. Modeling Costs
Component set Est. Time. LOC % .h

Initial Framework, limited PISA Front end, level 0 backend 2 daysa ≈4000 68%
pipelined PIM with forwarding, inter&intra-chip communica-
tion, memory hierarchy (caches, off-chip DRAM)

≈10 days 2260 44%

PowerPC Front End (including MachO loader) unknown 14965 72%
Addition of subset of Altivec vector ISA to PowerPC Front end 1 day 153 86%
Integratesim-outorder with framework. Combine with
memory hierarchy (Memory controller & DRAM modeling).

10 daysb 17047 ≈ 31%

Conventional NIC, simple network model and ability to instan-
tiate multiple MPP-like nodes.

11 days 1116 36%

Processor-in-Memory based NIC, including multi-processor
PIM on NIC

7 days 686 15%

Integrate specialized associative memory structure on NIC 1 day 306 25%
Basic SMP functionality [13] for conventional processors. 2 days 320 35%
Trace-based front end 3 days 2088 77%
Mesh Network 10 weeks ≈1000 ≈23%

aUsing considerable preexisting code
bincludes expansion ofprocessor/thread interface to accommodate OOE.

PowerPC front end required nearly 15,000 lines of code, but the vast majority was in header files

enumerating instruction semantics. Indeed, over half of that is the “big case statement” defining the

ISA. Similarly, the highly complexsim-outorder component of SimpleScalar was integrated

in approximately two weeks. This indicates that it is reasonable to integrate existing simulation

capabilities into the framework.

The most important capability of the SST is the ability to model parallel systems. A number of

examples tested this capability. A basic multiprocessor SMP/CMP functionality was implemented

(using SimpleScalar as the back end) with a snoopy cache coherency protocol in only two days

and with only 320 lines of code. A more complex system connecting two processors through a

pair of conventional network interface models (including details such as an embedded PowerPC

processor, DMA engines, and a simple network model) with 11 days of effort. This was later

extended to use a PIM processor with an additional 7 days of effort (including an updated MPI

implementation) and only 686 lines of code. Additionally, anovel hardware feature to accelerate

DRAFT 16



list processing was integrated in a single day.

Perhaps the most striking usability result is the addition of a mesh based network simulator to

the code. A first year graduate student with little experience with simulation and no experience

with routers implemented a time stepping, table based, 3D-router, connected those routers to each

other and to NICs using discrete event simulation, and implemented code to generate a topology

in the simulation environment. All of this has taken less than 10 weeks.

7. Conclusions

The Structural Simulation Toolkit framework provides a flexible modeling environment for the

independent exploration of programming model, ISA, and microarchitectural details. Multiple

independent front ends and back ends have been developed that illustrate the feasibility of this

approach and that provide a solid foundation for further research. The overhead of the simulator

relative to a raw microarchitectural simulator such as SimpleScalar is only 10%, which is an accept-

able trade-off for the flexibility offered. Furthermore, the Structural Simulation Toolkit employs a

hybrid simulation model to enable low overhead simulation of parallel systems where processor,

memory, and communication systems must interact. Multipleexamples of these parallel systems

(ranging from an SMP to a pair of independent nodes coupled with a standard network interface

to a set of nodes coupled through a 3D-router) were built to evaluate both the ease of use and

performance of the simulator. In each case, the extensions were found to require a minimal level

of effort while still delivering excellent performance.

8. Parallelism and the Future

A driving motivation for building Structural Simulation Toolkitwas the simulation of parallel

systems with thousands of nodes. To achieve this will require the parallelization of the fundamental

simulation infrastructure and will require further enhancement to the simulation environment.

A primary thrust of current research is the development of a parallel version of Structural Simu-

DRAFT 17



lation Toolkitusing MPI, so that future supercomputers canbe designed on current supercomputers.

MPP style systems have specific characteristics that facilitate a parallel implementation. A prelim-

inary feasibility study has indicated that a specialized simulation framework to address MPP style

systems is possible and will scale[25]. Part of this thrust will include integrating checkpoint/restart

support.

As the number of simulated nodes grows, it will become impossible to run high fidelity sim-

ulations of every system component. As such, a second research thrust is attempting to develop

lightweight models of each component that will sufficientlyemulate the detailed model under spe-

cific conditions. An example is a synthetic workload generator for the front-end.

Other projects include integrating power and energy modelsinto the simulator, improving the

memory models to accurately model memory controllers and new DRAM protocols such as FB-

DIMM, better coherency protocols for SMP/CMP studies, adding more heterogeneous processor

models and bringing aspects of a run-time system (e.g. a nodeallocator that matches production

systems), so that the parallel environment is as realistic as possible.

Lastly, efforts are underway to improve the packaging of thesimulator so that it be released

under and open source license.

References

[1] SystemC User’s Guide, 2.0 edition.

[2] Apple Architecture Performance Groups.Computer Hardware Understanding Development
Tools 2.0 Referenc e Guide for MacOS X. Apple Computer Inc, July 2002.

[3] Apple Architecture Performance Groups. Amber trace format specification v1.4. Technical
report, Apple Computer Inc, 2003.

[4] Apple Computer, Inc.Mach-O Runtime Architecture, August 2003.

[5] Todd Austin. Instructor benchmarks. http://www.simplescalar.com/benchmarks.html.

[6] David Bailey, Tim Harris, William Saphir, Rob van der Wijngaart, Alex Woo, and Maurice
Yarrow. The NAS parallel benchmarks 2.0. Technical Report NAS-95-020, NASA, Decem-
ber 1995.

DRAFT 18



[7] Robert C. Bedichek. Talisman: fast and accurate multicomputer simulation. InProceedings
of the 1995 ACM SIGMETRICS joint international conference on Measurement and modeling
of computer systems, pages 14–24. ACM Press, 1995.

[8] Doug Burger and Todd Austin.The SimpleScalar Tool Set, Version 2.0. SimpleScalar LLC.

[9] Joel Emer, Pritpal Ahuja, Eric Borch, Artur Klauser, Chi-Keung Luk, Srilatha Manne, Shub-
hendu S. Mukherjee, Harish Patil, Steven Wallace, Nathan Binkert, Roger Espasa, and Toni
Juan. Asim: A performance model framework.Computer, 35(2):68–76, 2002.

[10] Kazuhiro Kusano et al. Performance Evaluation of the Omni OpenMP Compiler. InISHPC
’00: Proceedings of the Third International Symposium on High Performance Computing,
pages 403–414, London, UK, 2000. Springer-Verlag.

[11] Jeff Gibson, Robert Kunz, David Ofelt, Mark Horowitz, John Hennessy, and Mark Heinrich.
Flash vs. (simulated) flash: closing the simulation loop.SIGOPS Oper. Syst. Rev., 34(5):49–
58, 2000.

[12] Stephen R. Goldschmidt.Simulation of multiprocessors: accuracy and performance. PhD
thesis, 1993.

[13] John L. Hennessy and David A. Patterson.Computer Architecture: A Quantitative Approach.
Morgan Kaufmann Publishers, Inc., San Francisco, California, 1996.

[14] Steve Herrod, Mendel Rosenblum, Edouard Bugnion, Scott Devine, Robert Bosch, John
Chapin, Kinshuk Govil, Dan Teodosiu, Emmett Witchel, and Ben Verghese. The SimOS
Simulation Enviornment. Stanford University, 1998.

[15] Jian Huang.The SImulator for Multithreaded Computer Architecture. University of Min-
nesota, Minneapolis, 1.2 edition, June 2000.

[16] C.J. Huges, V.S. Pai, P. Ranganathan, and V. Adve. RSIM:Simulating shared-memory mul-
tiprocessors with ILP processors.IEEE Computer, 32(2), February 2002.

[17] J. Robert Jump.YACSIM Regerence Manual. Rice University, Houston, TX, version 2.1
edition, March 1993.

[18] James R. Larus.Computer Organization and Design: The Hardware/Software Interface,
chapter Appendix A. Morgan Kaufmann, third edition, August2004.

[19] Jason Liu and David M. Nicol.DaSSF 3.1 User’s Manual. Dartmouth, April 2001.

[20] Naraig Manjikian. Multiprocessor enhancements of thesimplescalar tool set.SIGARCH
Comput. Archit. News, 29(1):8–15, 2001.

[21] Milo M.K. Martin, Daniel J. Sorin, Bradford M. Beckmann, Michael R. Marty, Min Xu,
Alaa R. Alameldeen, Kevin E. Moore, Mark D. Hill, and David A.Wood. Multifacet’s
General Execution-driven Multiprocessor Simulator Toolset. Computer Architecture News
(CAN), 2005 (TBD).

DRAFT 19



[22] Motorola Inc.MPC7400 RISC Microprocessor User’s Manual, March 2000.

[23] Motorola System Performance Modeling and Simulation Group. Sim G4 v1.4.1 User’s
Guide, 1998. Available as part of Apple Computer’s CHUD tool suite.

[24] George F. Riley. The georgia tech network simulator. InProceedings of the ACM SIGCOMM
workshop on Models, methods and tools for reproducible network research, pages 5–12.
ACM Press, 2003.

[25] Arun Rodrigues. Gossamer simulator design document. Technical Report TR05-09, Univer-
sity of Notre Dame, Notre Dame, Ind., 2002.

[26] Arun Rodrigues. A comparison of serial simulation frameworks for simulation of computer
architectures. Technical Report TR04-32, University of Notre Dame, 2004.

[27] Arun Rodrigues. Enkidu discrete event simulation framework. Technical Report TR04-14,
University of Notre Dame, 2004.

[28] Arun Rodrigues.Programming Future Architectures: Dusty Decks, Memory Walls, and the
Speed of Light. PhD thesis, University of Notre Dame, 2006.

[29] Arun Rodrigues, Richard Murphy, Ron Brightwell, and Keith Underwood. Enhancing NIC
performance for MPI using processing-in-memory. InProceedings the 2005 Workshop on
Communication Architectures for Clusters, April 2005.

[30] Lambert Schaelicke and Mike Parker. Ml-rsim referencemanual. Technical Report TR04-10,
University of Notre Dame, Notre Dame, Ind., 2002.

[31] Anthony Symons and V. Lakshmi Narasimhan. The design and application of PARSIM - a
message passing computer simulator, 1997.

[32] Keith D. Underwood, K. Scott Hemmert, Arun Rodrigues, Richard Murphy, and Ron
Brightwell. A hardware acceleration unit for mpi queue processing. In19th International
Parallel and Distributed Processing Symposium (IPDPS’05), April 2005.

[33] Manish Vachharajani, Neil Vachharajani, David A. Penry, Jason Blome, and David I. August.
The liberty simulation enviornment, version 1.0.Performance Evaluation Review: Special
Issue on Tools for Architecture Research, 31(4), March 2004.

[34] Jack E. Veenstra and Robert J. Fowler. Mint: A front end for efficient simulation of shared-
memory multiprocessors. InProceedings of the Second International Workshop on Modeling,
Analysis, and Simulation On Computer and Telecommunication Systems, pages 201–207.
IEEE Computer Society, 1994.

DRAFT 20




