SAND2007-0044C

The Structural Simulation Toolkit: A Tool for Exploring

Parallel Architectures and Applications

Arun Rodrigues$ Richard Murphy Peter Kogge

Keith Underwood

University of Notre Dame Sandia National Laty
Computer Science and Engineering PO Box 5800
384 Fitzpatrick Hall MS-1110
Notre Dame, IN 46545 Albuguerque, NM 87185-1110

kogge@nd. edu, {afrodri,rcnurph, kdunder }@andi a. gov

Abstract

Parallel and multithreaded architectures and execution models are poised to dominate comput-
ing. This growing complexity makes system design ever more challenging and has led to a drive for
innovation in systems where the impact of innovation is hard to predict. The Structural Simulation
Toolkit (SST) was developed to explore novel systems where the processor, memory and commu-
nications system interact with the programming model. It is designed to be an open framework
that unifies hybrid discrete event simulation and time-stepping simulation to enable both detailed
and abstracted simulations. The focus on parallel and multithreaded systems has been validated
through experimentation with models of everything from processing-in-memory to conventional
microprocessors connected by conventional network interfaces running a variety of programming

models such as MPI and OpenMP.

*Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United
States Department of Energy under contract DE-AC04-94AL85000.

1. Introduction and Motivation

Solving the world’s most demanding computational problevilsrequires massively parallel
systems and programming models capable of exploiting siafenagnitude more parallelism than
is currently possible. Current trends indicate that parafultithreaded computers will become
widespread at all levels of computing. With these new comwsutomes a widespread push for
architectural and programming model innovation.

As these systems grow in complexity, modeling them in theiirety becomes more difficult
because the community lacks the simulation environmenteteéo perform such an ambitious
simulation. Instead, state of the art practice simulatespaments in isolation under a set of con-
ditions that are believed to be representative. Unforelgagéach generation of machines makes
this methodology less tenable.

The problem is compounded by architectural innovationglidginovel components to a system
(vector processors, processing-in-memory, advancedignaetworks) can have impacts which
are not well understood. This lack of understanding limhesadoption of new architectural com-
ponents.

Similarly, novel parallel programming models and applmas suffer from a lack of simulation
frameworks which allow the community to better understdrettadeoffs imposed by new archi-
tectures. Thus, new programming models are explored otirgxisardware, rather than used to
gain insight into new machines. This leads to a “chicken-agg’ problem — parallel applica-
tions lack the architectural innovations they need to perfarell, and novel architecture lack the
advanced programming models they require.

What is needed is a simulation infrastructure that will suppnswering questions about system
performance for new architectures and programming modfeésnovel architectural or microar-
chitectural feature accelerates an individual node by @faxf 10, would the system continue to
scale efficiently? How will system performance change if Wwarge the network topology? Can

programming models express sufficient parallelism to khepsands of processors with hundreds

DRAFT 2

of cores with dozens of threads busy? How can hardware synidation improve multithreaded
application performance?

Novel parallel systems are much more complex than can be letbdenveniently by existing
research tools. Processing components can include mawegsors, vector processors, CMPs,
Processing-In-Memory (PIM), and stream based architestutarge scale machines are created
by connecting processors through network interface chigach tend to be complex systems
on chip designs) to routers that support a variety of topeggWhile these components can be
modeled in isolation, even the simulation of small systeatesmtegration tends to require a “one-
of-a-kind” effort.

The Structural Simulation Toolkit (SST) discussed in thego@r was developed to help solve
these problems, and to allow exploration of highly conautrey'stems where the ISA, microarchi-
tecture, network, and multi-node system issues need totderexl together. SST is modular and
provides the ability to modify one characteristic at a timthaut having to rip up the rest, or mod-
ify support tools such as compilers until necessary or gppate. The key to this is the explicit
separation of program and instruction interpretation (frent end”) from instruction and mi-
croarchitectural timing (the “back end”), combined withybhd discrete event and time-stepping
simulation framework. The interface to the front end supgpaorultiple program formats such as
instruction traces and compiled executables. The back mtedace supports multiple levels of
detail, from simple functional simulation to models of eallions of heterogeneous processors.
Introduction of new front or back end components can be dodegendently of the other. Crit-
ically, the framework is designed with an eye towards paliattion in the next generation, to
allow for extremely large scale system simulation.

Experiments to date have used this simulation structurgptoee software and hardware tech-
niques related to processing in memory, novel NIC architestto support MPI communication,
vector processing, and has recently been equipped withea tfimensional router model. The
typical initial experimental costs have been in the range lo&dndful of days of development time

and results in simulation performance comparable to the stiathe art. Together, this indicates

DRAFT 3

that such a structure can have a significant effect on futwatatactural research.

2. Related Work

A variety of simulators and simulation strategies are usatbmputer architecture, providing a
range of features and functionality. One goal of the Stma¢t8imulation Toolkit is to build upon
the success of these previous works.

Many architectural simulators have been written to exptbgsign issues on the processor or
system level. These simulators represent programs by esrduased, trace-based, or stochastic
mechanisms. While they vary in level of detail, configurdfiland focus, the SST’s focus on
system-level interactions in MPP systems that include Ihanghitectural components is unique.
In the case of an MPP, the scale of the system leads to a ma@elyomoupled memory hierarchy
design (in fact, many MPPs allow only message-passing lasachunication). In addition, MPPs
have a complex software stack (e.g., an MPlI communicatier)aver complex interconnection
hardware that must be optimized in simulation in conjunctigth the overall system design.

SimpleScalar[8] is one of the most commonly used architatgimulation toolkits. It includes
a number of execution-based simulators, ranging from ®negecution to cache simulation to
full simulation of an out-of-order processor and memorydniehy &i m out or der). A num-
ber of processor parameters can be adjusted, such as igde fivnctional units, internal queue
lengths, and cache characteristics. Though SimpleSaallanwdels a single conventional proces-
sor, several derivatives have extended its functionalitye Simulator for Multithreaded Computer
Architecture [15] (SIMCA) was developed to explore muhiréaded architectures by augment-
ing the PISA ISA to include instructions for thread createmd control. Another derivative,
MP_simplesim[20] presented multiprocessor cache simulatapebilities. However, this simu-
lator only modeled cache interactions and did not attempiddel detailed timing. Other multi-
processor simulators include Solo[11], RSIM[16], Tand}[land MINT[34].

simulator[21] was created to provide a flexible environnibat addresses the needs of CMP and

DRAFT 4

SMP simulation and memory hierarchy design. GEMS also dadesuhe functional portion (ISA
interpretation, etc.) from the timing and microarchiteatisimulation to simplify timing design.
In contrast, SST targets issues in CMP, SMP, and MPP systéraeva node is a heterogeneous
collection of processors, memories, NICs, and routers.

Other simulators have been developed to enable specifiidmadity. For example, SImOS[14],
Talisman[7], and ML-RSIM[30] are capable of supporting &xecution of an OS. SPIM[18] was
developed as a teaching tool for exploring the MIPS ISA. @hsuch asi ng4[23] andsi ng5,
were developed to model a specific processor (the PowerPCaftD970) in detail. Both of these
simulators are trace-based, and provide a high level ofldbta lack a high degree of parame-
terization. Additionally, they do not attempt to simulatéufi system with multiple processors or
network.

The proprietary ASIM[9] performance model framework is qgoised of a set of modules which
can be composed to form different architectures. A novelfesof ASIM is the partial separation
of the performance model for system components from therpmgxecution. Other modular
simulation efforts include the Liberty Simulation Enviraent[33], which has developed a num-
ber of modules in its own LSS language, and Microlib whichvites a number of modules in
SystemCJ[1]. Both provide detailed simulation, but lack asteaction between hardware details
and program execution. The message PAssing computeR SIMWPARSIM[31] was developed
to explore algorithms and network topologies for paraltehputers. It models program execution
as a generalized algorithm divided into computation andmamication. Processor speed and
network characteristics can be parameterized, but no pttsmmade to model the internals of the
processor.

Some simulators focus on network modeling, such as DaS$ERIBGTNetS[24]. These sim-
ulators can simulate large networks in great detail, alhgafor a variety of different topologies,
protocols, and link characteristics. However, these saous do not attempt to model the exact
execution of a program or the internal architecture of aesystinstead program communication

patterns are generated stochastically.

DRAFT 5

Back End

.

Front End
R—————
4 .) U
Instruction Trace FE o PIM
. Trace) 5 8
e ' E.: %
ELF PISA PISAFE || g © << sim-outorde
_ Binary) o=
_|
L—— 3
e =
Mach-O PP}@ PPC FE B <K NIC Proc
. Binary - o

3. Framework

Figure 1. Simulator Framework and Component

é\/lo%rt]gglligr

Special
Hardware

Structural Simulation Toolkitis an architectural simalaimplemented in about 55,000 lines of

C++. It is composed of four primary elements (see Figure Hg:Front Ends, which model the

execution of a program; tHgack Ends, which model architectural components of the system; the

Processor/Thread Interface which allows the front and back ends to interact; &ndi du[27],

a component-based discrete event and synchronous siomufedimework that coordinates com-

munication between components and models the passage ef flim provide modularity and

reconfigurability, it is possible to select a front end andade a variety of back end components

at run time. This allows the user to explore a variety of hanaaconfigurations while using the

execution model best suited to the available toolset.

3.1. Front End

The front end is responsible for translating a binary exauletinto a stream of instruction and

thread objects to the back end (see Section 3.2) and for nmapager state. This begins with

a loader that translates from binary to simulated memorygenaOnce simulation begins, the

front end determines how each instruction modifies prograate ge.g. memory and registers)

and provides the instruction to the back end. The state negmegt machinery performs a similar

function to SimpleScalar's[8s. def file, or SPIM's[18]r un. c. Currently, three front ends can

be selected at run-time.

DRAFT

e PISA: an execution-based front end which uses the PISA ISA anéllieexecutable for-
mat. The PISA ISA is augmented to provide functionality rieggh to access experimental
hardware. New instructions were added to explore low-dustid spawning and different
synchronization primitives, to allow a processor to comioate with a subordinate proces-
sor on a NIC, to access specialized hardware. The PISA frushaows use of modified

versions of thgcc or g++ compilers version 2.7.2.

e PPC: an execution-based front end which uses the PowerPC 3422 the MachOJ[4]
executable format. This PowerPC ISA is augmented like tI8ARBA. It also includes a
small subsétof the AltiVec vector extensions. The MachO format is thendtd format
for MacOS X executables and allows the use of binaries alelayea number of modern
compilers. It has been tested wigfcc andg++ versions 3.1, 3.3, and 4.0.1, g77 version

3.4, IBM XLF 8.1 FORTRAN 77/90 compilers, and Absoft 8.0 FORAN 77/90 compilers.

e Trace: atrace-based front end which uses the tt6 PowerPC instrucace format[3] gener-
ated by thenber trace generator[2]. A tt6 file records data about each inBtm executed
by the target program. The Trace front end supports limipetslative execution by pre-
scanning the trace and recording the address of each itistriadong with its instruction
record. If the back end mispredicts a branch, the front erddreturn the instruction at
the mispredicted address as long as that address is exemuntenivhere in the trace. Most
mispredicts return a valid instruction address enabliedotick end to simulate the effect of

speculative execution.

An important factor in the SST front end is thahr eads are first-class objects. Rather than
tacking on parallelism to a simulator, multithreading adicurrency is an integral part in how

programs are viewed and how they interact with hardware.

1 vx, st vx, vspl t w, cnpequhl.], andvand instructions

DRAFT 7

3.2. Back End

The back end is responsible for modeling processor hardwareonsumes instructions and
threads generated by the front end and determines how |lomgpid take to execute them. The
back end is composed of multipgiki du components (see Section 3.3) that represent such things
as processors, networks, memory controllers, and DRAMschfomponents can communicate
throughEnki du’s discrete event message passing system.

Current components include:
e Basic Multithreaded Processor execution-only, no timing. Similar tei m f ast .

e PIM Chip: a Processor-in-memory(PIM) chip that contains one or mmoudtithreaded
processors. It models instruction caches, on-chip DRAM RAR memory, inter- and
intra-chip communication between PIM processors, and &éorgd connection to a backing

memory controller.

e MT Processor. a multithreaded in-order pipeline without branch predict Can be con-
figured for different pipeline lengths, forwarding, andehd scheduling mechanisms. It
supports non-local memory accesses by remote instruatiotsead migration. These pro-

cessors can be connected to caches and to each other bytg @&de-chip networks.

e Conventional Processor a conventional, out-of-order, multi-issue processoredasn the
model in SimpleScalar'si m out or der . It can use SimpleScalar's memory model or can
connect to a memory controller component. Additionallyaaib prefetcher has been added.

It can be configured to handle multiple threads with simpfetatcompletion scheduling.

e CMP Processor a CMP or SMP variant of the conventional processor with g#snoop-

ing coherency policy.

e Memory Controller : a simple memory controller model which simulates multigiannels,

bus contention, bandwidth constraints, communicatia@niat, and DRAM interleaving.

DRAFT 8

e DRAM: A model of a DRAM chip with a configurable number of resizablRAM banks.
Open row (open page) latency and contention is modeled,redumber of open rows is

adjustable.

e Network components a NIC containing a bus, local memory, a Direct Memory Access
(DMA) component, and processor. The NIC processor can beseotional core or a mul-
tithreaded processor. This NIC can be connected to a coafipimesh topology network

with detailed routers (including buffers and contention).

3.3. Hybrid simulation

Modern processors can be represented as a series of buffeis store instructions and data,
separated by logic which acts upon those instructions. hatas from buffer to buffer according
to a strict centralized clock. For architectural simulatid is possible to say that all events take
place in synchronization with this clock. Processors oftawve dozens of instructions in various
stages of execution during each processor clock cycle. Asudtr several transition events can be
expected to occur each cycle.

Parallel architectures often have two distinct types afdii@gons. Transitions within a processor
occur several times a cycle. Additionally, there will berefuent inter-processor communication
events. For this reason a hybrid simulation framework whinbines synchronous time-stepping
and discrete event-passing provides the most flexibility lawest overhead for parallel architec-
tural simulation.

The Structural Simulation Toolkit is built arourighki du, a hybrid simulation framework. In
Enki du, conponent objects represent each physical component of the systeah dearpo-
nent is evaluated every clock cycle and advances its interntd.staadditionconponent s can
communicate by passing event messages to each other inrechasyous manner. Multiple clocks
are provided to allow differerdonponent to operate at different speeds. This optimizes for the

common case in architectural simulation by providing loveithead synchronous time-stepping to

DRAFT 9

handle the bulk of the functionality and a discrete eventiraacsm for component interactions.

4. Programming Models

A key motivation for the SST is to allow exploration of mulgpprogramming models. Es-
pecially programming models which benefit from unique hawfeatures such as support for
multithreading, fast synchronization, and specializedlWare. This is accomplished by allowing
multiple front-ends to permit a variety of compilers ancc&-agathering tools and by extending the

ISAs of some of the front-ends to access special hardwareréesa
4.1. Manual Multithreading

Explicit, hardware supported multithreading is suppofbgdexposing several multithreaded
primitives. The “cost” of executing these primitives is eiehined by the back-end in order to
model differing levels of hardware efficiency in supportmgltithreading.

The exposed primitives include: mechanisms to create astilayethreads, both with and with-
out stacks; Fast allocation of local memory in NUMA architees; fast synchronization mech-
anisms such as Full/Empty Bits and reserved loads/stdme=ad migration controls; and thread
scheduling controls. These primitives can be used by thieeser accessed through a high-level
library such agt hr eads. A modified version of i bc is provided which utilizes these primi-
tives to implemenpt hr eads and provide other library functionality in a multithreademhtext
(e.g.mal | oc).

These multithreading primitives have been used to createngbar of multithreaded bench-
marks and applications and explore their behavior on atyaokEmultithreaded and multi-core
architectures. For example, a parallel graph search #hgorvas simulated to study the effects of

memory latency and bandwidth and different thread sem&ntic
4.2. OpenMP

Building on thept hr eads library, support for the Omni OpenMP compiler[10] is proeed

DRAFT 10

OpenMP support was used to compile the NAS Parallel bendtsjr These, combined with
hand-coded SPLASH2 benchmarks, were used to evaluat®dkcsyenchronization techniques for

multithreaded architectures.
4.3. Threadlets

A novel mechanism to exploit fine-grained parallelism is $& wery small threads or “thread-
lets.” These threadlets may only be a handful of instrustiong, and would require a high level
of support from the hardware for thread creation and synmghadion.

The potential of threadlets was examined using the traseéb&ont-end. Instruction traces
from a number of applications were pre-processed to idethtreadlets and insert synchronization

instructions. A multithreaded processor model was thed tsevaluate the performance potential.

4.4. MPI

Two implementations of the Message Passing Interface (M&g been used with the SST.
The first is a subset of the MPI API which concentrates on Nliadl of MPI processing. This
MPI has been modified to explore the effects of multithreggduector processing, and multi-core
architectures on MPI message processing[29, 32]. AlsdVithkCH MPI1 implementation has been
ported to the SST, allowing a complete set of functionality.

Support for MPI allows a wide variety of applications to be& rand also enables examining
how MPI might be extended to take advantage of novel ardites. For example, MPI seman-
tics were extended to use Full/Empty Bits to allow a very finained overlap of communication
and computation and the performance impact on a subset dMAlseParallel Benchmarks was

examined[28].
4.5. Explicit Offload

Another programming model is explicit off-load of compudatinto specialized hardware. Uti-

lizing extensions to the front-end, a thread can interatit Wardware models of other processors.

DRAFT 11

This can range from launching a full thread of execution tatached specialized processor such
as a NIC or processor-in-memory, or feeding data into a mpimponent to perform a specific

such as a content-addressable memory or model of an FPGA.

5. Validation

Correctness validation requires that the simulator predasults that match a known target. In
this case, SimpleScalar is used as one of the back ends, &ichpteScalar provides a point of
comparison.

Validation against SimpleScalar used the PISA ISA front and a configuration for the Sim-
pleScalar back end based on a 4-way OOO processor. Valdaed three applicationspeed-
Test , a memory, math, and cache intensive benchmark which at®gteveral system libraries;
anagr am an anagram finder from the SimpleScalar Instructor Bencks{ts|; andgo, A go-
playing benchmark program.

The output of these simulations was checked against knoweatovalues to show correct exe-
cution of the program. All outputs were correct. Also, tataimber of instructions committed,
execution cycles, branch prediction hit rate, and cacheatgtfor L1s, L2, and TLBs were com-
pared. Some known small discrepancies exist between theaB&BimpleScalar. These include
small differences in how certain system calls are handledssack layout details. However, these

differences prove to be minor. For all measurements, thev&&Twithin a fraction of a percent.

6. Results

A simulation infrastructure has two metrics by which it slibbe evaluated: the speed of sim-
ulation and the ease with which it can be used for its purpoBee speed of simulation is a
straightforward measurement and is compared below to atichitectural simulators. In contrast,
“ease of use” is a much more difficult metric to evaluate. Terapt to characterize this metric,

the “effort” in terms of both lines of code and days to creaeg tode was captured from multiple

DRAFT 12

8000 T T T T T 7000

5 5000~

d Instructi

T 4000

¢ 4000

1 Simulat

$ 30001

ycles / Simulated Cycle

© 3000+
g

st Cycl

g

H

0 0
SimpleScalar SimG4 SST-PISA SST-PPC SST-Trace SimpleScalar SimG4 SST-PISA SST-PPC SST-Trace

Figure 2. Simulator Comparison: the Structural Simulation Toolkit incurs only a small
overhead against SimpleScalar.

implementations of architectural features and is preskmgsow.

6.1. Performance

To measure the performance of the simulator,4peedTest program from Section 5 was
used. Figure 2 compares the performance of the Structunalil&ion Toolkit with both Sim-
pleScalar andi ng4, a trace-based simulator for the PowerPC G4 (7400). ThetGtal Simula-
tion Toolkit trace-based front end uses the same formatessithy4 simulator, but the back ends
are different. First, the average number of host processies required to complete a simulated
cycle are shown.

Comparing the SST-PISA data point to the SimpleScalar dzitd jndicates that the modularity
of the framework adds approximately 10% overhead. This éaively low overhead for separat-
ing the instruction decode from the microarchitecturalidation. Using the PowerPC front end
increases the overhead slightly per simulated cycle anttalce based front end is much heavier
weight

Moving to the other half of Figure 2, gives an “instructionrstruction” ratio between simulated

and host instructions. This effectively divides the datal@upper graph by the IPC achieved on

2This is currently believed to be a difference in the level pfimization effort applied to the trace based front end.

DRAFT 13

10000 T T T T 7000

5 5000~

d Instructi

T 4000

1 Simulat

$ 30001

Host Cycles / Simulated Cycle

st Cycl

g

H

0
SMP (2) 1PIMNIC 2PIMNIC Conv. NIC SMP (2) 1PIMNIC 2PIMNIC Conv. NIC

Figure 3. Multi-processor configurations Comparison: All using PPC front end.

the simulated platform. The performance relationship betwthe PISA based SimpleScalar and
the PISA front end of the Structural Simulation Toolkit r@nsaconstant; however, the PPC front
end and trace based front end show significant relative gdihs occurs because the PPC and
trace based front ends use a newer compiler (gcc 3.3) rdtharthe older compiler (gcc 2.7.2)
available for PISA.

Models of multiple system level configurations were alsodbenmarked and the results are shown
in Figure 3. A 2 processor SMP system was tested with the SPI2A®n-contiguous LU kernel.
The other configurations tested conventional processdfs programmable NICs attached by a
simple network. A small MPI benchmark was constructed tbatgpseveral 16KB message buffers
and then measures the latency of MPI message matching. Theebhd configurations all used
an 8-way out of order processor for the main processors. TReshrocessor was modeled as
a 2-way conventional processor, or as one or two PIM procsssthe relatively high cost per
cycle for the NIC-based systems is because the NIC processorunning at 1/4 of the clock rate
of the main processor. These are much cheaper operatioasns bf host cycles per simulated
instruction.

Another important performance measurement is the amousitraflation overhead incurred by
a framework. Overhead becomes especially important whemamber of components is high

(such as a highly parallel architecture) or if componenésratatively simple. Such simulators

DRAFT 14

may become dominated by framework overhead.

Overhead can be measured by the number of instructions stephmcessor must execute for
each simulated component for each simulated clock cycleh & weasurements of various simula-
tors [26] reveal notable contrasts between the overheadtfefent models of computation. The
number of host instructions per component per simulateteaan vary from 57 for lightweight
hybrid frameworks such asnki du, to 956 for more complex frameworks such as SystemC —
over a 16 fold increase. Pure event-driven frameworks IIKESIM[17] fall somewhere between
with 297. Experiments indicate that these overhead instng execute with a IPC between 0.8
and 1.2 on modern processors.

Put another way, a simulation of 10 components with an owthed 1000 instructions, exe-
cuting on a 1Ghz machine with an IPC of 1.0 would be limited ®,000 simulated cycles per
real-world second. Whereas a similar setup with an overb&&@ instructions would be capable
of over 1,600,000 cycles per second.

The Structural Simulation Toolkit, built oEBnki du, provides a very low overhead by optimiz-

ing for the common case for architectural simulation.

6.2. Modeling Costs

The SST is flexible enough to simulate a range of architelctorgigurations, but the important
metric is how hard it is to create new architectural configares. New components have been
added to the simulator to support a number of projects aneftbe level to add those components
is captured in Table 1. Many of the smaller projects (ISA egitens, new front ends) took only
a handful of days to complete. Even the addition of largeesgstomponents such as integrating
SimpleScalar’s [8] out-of-order processor model or ad@imgiC and simple network model took
less than two weeks.

A primary features of the Structural Simulation Toolkit ietability to add new front and back
ends. Adding a PIM back end complete with communication loéiias and the unique memory

model of a PIM took approximately two weeks and slightly o28600 lines of code. Adding the

DRAFT 15

Table 1. Modeling Costs
Component set | Est. Time.| LOC | %.h |

Initial Framework, limited PISA Front end, level 0 backend 2 day$ | ~4000| 68%
pipelined PIM with forwarding, inter&intra-chip commursie| ~10 days| 2260 | 44%
tion, memory hierarchy (caches, off-chip DRAM)
PowerPC Front End (including MachO loader) unknown | 14965| 72%

Addition of subset of Altivec vector ISA to PowerPC Front end 1 day 153 86%

Integratesi m out or der with framework. Combine with 10 day8 | 17047 | ~ 31%
memory hierarchy (Memory controller & DRAM modeling)
Conventional NIC, simple network model and ability to imsta 11 days | 1116 | 36%
tiate multiple MPP-like nodes.
Processor-in-Memory based NIC, including multi-processo 7 days 686 15%
PIM on NIC

Integrate specialized associative memory structure on NIC 1 day 306 25%
Basic SMP functionality [13] for conventional processors. | 2 days 320 35%
Trace-based front end 3 days 2088 | 77%
Mesh Network 10 weeks | ~1000| ~23%

aUsing considerable preexisting code

bincludes expansion qfr ocessor /t hr ead interface to accommodate OOE.

PowerPC front end required nearly 15,000 lines of code, lmivast majority was in header files
enumerating instruction semantics. Indeed, over halfatfidithe “big case statement” defining the
ISA. Similarly, the highly complexi m out or der component of SimpleScalar was integrated
in approximately two weeks. This indicates that it is readsa to integrate existing simulation
capabilities into the framework.

The most important capability of the SST is the ability to ralggiarallel systems. A number of
examples tested this capability. A basic multiprocessoP8BMP functionality was implemented
(using SimpleScalar as the back end) with a snoopy cacheaamteprotocol in only two days
and with only 320 lines of code. A more complex system conngdivo processors through a
pair of conventional network interface models (includirggails such as an embedded PowerPC
processor, DMA engines, and a simple network model) with agsdf effort. This was later
extended to use a PIM processor with an additional 7 daysfoftéfncluding an updated MPI

implementation) and only 686 lines of code. Additionallyy@vel hardware feature to accelerate

DRAFT 16

list processing was integrated in a single day.

Perhaps the most striking usability result is the additiba mesh based network simulator to
the code. A first year graduate student with little expemewith simulation and no experience
with routers implemented a time stepping, table based,&er, connected those routers to each
other and to NICs using discrete event simulation, and implged code to generate a topology

in the simulation environment. All of this has taken lesathh® weeks.

7. Conclusions

The Structural Simulation Toolkit framework provides a fté& modeling environment for the
independent exploration of programming model, ISA, andraa@cchitectural details. Multiple
independent front ends and back ends have been develogatusiaate the feasibility of this
approach and that provide a solid foundation for furtheeaesh. The overhead of the simulator
relative to a raw microarchitectural simulator such as $&8palar is only 10%, which is an accept-
able trade-off for the flexibility offered. FurthermoreegtBtructural Simulation Toolkit employs a
hybrid simulation model to enable low overhead simulatibparallel systems where processor,
memory, and communication systems must interact. Mulegkemples of these parallel systems
(ranging from an SMP to a pair of independent nodes coupléd avstandard network interface
to a set of nodes coupled through a 3D-router) were built tduaste both the ease of use and
performance of the simulator. In each case, the extensiens feund to require a minimal level

of effort while still delivering excellent performance.

8. Parallelism and the Future

A driving motivation for building Structural Simulation ®tkitwas the simulation of parallel
systems with thousands of nodes. To achieve this will reghie parallelization of the fundamental
simulation infrastructure and will require further enhament to the simulation environment.

A primary thrust of current research is the development cdralfel version of Structural Simu-

DRAFT 17

lation Toolkitusing MPI, so that future supercomputersisalesigned on current supercomputers.
MPP style systems have specific characteristics thattfeila parallel implementation. A prelim-
inary feasibility study has indicated that a specializedidation framework to address MPP style
systems is possible and will scale[25]. Part of this thruBtimclude integrating checkpoint/restart
support.

As the number of simulated nodes grows, it will become imiisgo run high fidelity sim-
ulations of every system component. As such, a second ms#aust is attempting to develop
lightweight models of each component that will sufficiergipulate the detailed model under spe-
cific conditions. An example is a synthetic workload genarédr the front-end.

Other projects include integrating power and energy moiédsthe simulator, improving the
memory models to accurately model memory controllers amd DBAM protocols such as FB-
DIMM, better coherency protocols for SMP/CMP studies, addnore heterogeneous processor
models and bringing aspects of a run-time system (e.g. a albmt=ator that matches production
systems), so that the parallel environment is as realistpoasible.

Lastly, efforts are underway to improve the packaging ofdimeulator so that it be released

under and open source license.

References

[1] SystemC User’s Guid@.0 edition.

[2] Apple Architecture Performance GroupSomputer Hardware Understanding Development
Tools 2.0 Referenc e Guide for MacOSAfpple Computer Inc, July 2002.

[3] Apple Architecture Performance Groups. Amber tracerfar specification v1.4. Technical
report, Apple Computer Inc, 2003.

[4] Apple Computer, IncMach-O Runtime Architecturdugust 2003.
[5] Todd Austin. Instructor benchmarks. http://www.siraptalar.com/benchmarks.html.

[6] David Bailey, Tim Harris, William Saphir, Rob van der Wgaart, Alex Woo, and Maurice
Yarrow. The NAS parallel benchmarks 2.0. Technical Repd&MN5-020, NASA, Decem-
ber 1995.

DRAFT 18

[7] Robert C. Bedichek. Talisman: fast and accurate muttigoter simulation. IfProceedings
of the 1995 ACM SIGMETRICS joint international conferenc®@asurement and modeling
of computer systempages 14-24. ACM Press, 1995.

[8] Doug Burger and Todd AustinThe SimpleScalar Tool Set, Version.23mpleScalar LLC.

[9] Joel Emer, Pritpal Ahuja, Eric Borch, Artur Klauser, @éung Luk, Srilatha Manne, Shub-
hendu S. Mukherjee, Harish Patil, Steven Wallace, Nathakddt, Roger Espasa, and Toni
Juan. Asim: A performance model framewo&omputey 35(2):68-76, 2002.

[10] Kazuhiro Kusano et al. Performance Evaluation of thenD@penMP Compiler. INSHPC
'00: Proceedings of the Third International Symposium ogtHPerformance Computing
pages 403—-414, London, UK, 2000. Springer-Verlag.

[11] Jeff Gibson, Robert Kunz, David Ofelt, Mark Horowitoahh Hennessy, and Mark Heinrich.
Flash vs. (simulated) flash: closing the simulation [08GOPS Oper. Syst. Re84(5):49—
58, 2000.

[12] Stephen R. GoldschmidSimulation of multiprocessors: accuracy and performaneéD
thesis, 1993.

[13] John L. Hennessy and David A. Patters@omputer Architecture: A Quantitative Approach
Morgan Kaufmann Publishers, Inc., San Francisco, CaliéQi096.

[14] Steve Herrod, Mendel Rosenblum, Edouard Bugnion, tS0etine, Robert Bosch, John
Chapin, Kinshuk Govil, Dan Teodosiu, Emmett Witchel, anchBé&erghese. The SimOS
Simulation EnviornmentStanford University, 1998.

[15] Jian Huang.The Simulator for Multithreaded Computer Architecturdniversity of Min-
nesota, Minneapolis, 1.2 edition, June 2000.

[16] C.J. Huges, V.S. Pai, P. Ranganathan, and V. Adve. RSiMulating shared-memory mul-
tiprocessors with ILP processol&EE Computer32(2), February 2002.

[17] J. Robert Jump.YACSIM Regerence ManuaRice University, Houston, TX, version 2.1
edition, March 1993.

[18] James R. Larus.Computer Organization and Design: The Hardware/Softwarterface
chapter Appendix A. Morgan Kaufmann, third edition, Augkg804.

[19] Jason Liu and David M. NicolDaSSF 3.1 User’s ManuaDartmouth, April 2001.

[20] Naraig Manjikian. Multiprocessor enhancements of siraplescalar tool setSIGARCH
Comput. Archit. News29(1):8-15, 2001.

[21] Milo M.K. Martin, Daniel J. Sorin, Bradford M. BeckmaniMichael R. Marty, Min Xu,
Alaa R. Alameldeen, Kevin E. Moore, Mark D. Hill, and David Wood. Multifacet’s
General Execution-driven Multiprocessor Simulator TealsSComputer Architecture News
(CAN), 2005 (TBD).

DRAFT 19

[22] Motorola Inc. MPC7400 RISC Microprocessor User’s Manpilarch 2000.

[23] Motorola System Performance Modeling and Simulatiomup. SimG4 v1.4.1 User’s
Guide 1998. Available as part of Apple Computer's CHUD tool suite

[24] George F. Riley. The georgia tech network simulatoPtoceedings of the ACM SIGCOMM
workshop on Models, methods and tools for reproducible oktwesearch pages 5-12.
ACM Press, 2003.

[25] Arun Rodrigues. Gossamer simulator design documestthfiical Report TR05-09, Univer-
sity of Notre Dame, Notre Dame, Ind., 2002.

[26] Arun Rodrigues. A comparison of serial simulation femorks for simulation of computer
architectures. Technical Report TR04-32, University ofrddame, 2004.

[27] Arun Rodrigues. Enkidu discrete event simulation feavork. Technical Report TR04-14,
University of Notre Dame, 2004.

[28] Arun Rodrigues.Programming Future Architectures: Dusty Decks, Memoryl$yand the
Speed of LightPhD thesis, University of Notre Dame, 2006.

[29] Arun Rodrigues, Richard Murphy, Ron Brightwell, anditkeUnderwood. Enhancing NIC
performance for MPI using processing-in-memory. Pimceedings the 2005 Workshop on
Communication Architectures for Cluste/spril 2005.

[30] Lambert Schaelicke and Mike Parker. MI-rsim referen@nual. Technical Report TR04-10,
University of Notre Dame, Notre Dame, Ind., 2002.

[31] Anthony Symons and V. Lakshmi Narasimhan. The desighapplication of PARSIM - a
message passing computer simulator, 1997.

[32] Keith D. Underwood, K. Scott Hemmert, Arun Rodriguesichiard Murphy, and Ron
Brightwell. A hardware acceleration unit for mpi queue @esing. In19th International
Parallel and Distributed Processing Symposium (IPDPS’@g)ril 2005.

[33] Manish Vachharajani, Neil Vachharajani, David A. Bediason Blome, and David I. August.
The liberty simulation enviornment, version 1.Berformance Evaluation Review: Special
Issue on Tools for Architecture Resear8i(4), March 2004.

[34] Jack E. Veenstra and Robert J. Fowler. Mint: A front eoddfficient simulation of shared-
memory multiprocessors. Proceedings of the Second International Workshop on Modgli
Analysis, and Simulation On Computer and Telecommuniceiigstemspages 201-207.
IEEE Computer Society, 1994.

DRAFT 20

