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Goals



Goals

● Use neural networks to augment reduced-order models (ROMs) for improved 
prediction

● Learn error behavior to allow for future-time error prediction, either 
deterministic or statistical

● Use real-time ROM augmentation to more accurately simulate and predict 
extreme events in physical systems
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Problem Description



Physical Problem

● Euler-Bernoulli beam (             )

● Harmonic forcing at 

● Initial displacement prescribed at 

● 10 equidistant ‘sensor’ locations

● 4 datasets were generated varying 
initial conditions and spring constants
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Reduced Order Model

● Galerkin projection onto low-rank 
basis

● POD basis generated from 
simulations with varying parameters 
and initial conditions

● 10 modes retained for each ROM 
basis

● Fast integration using implicit Runge-
Kutta methods (          each)

7



ROM Errors8



Dynamic Prediction Framework

Instead of learning the map             , 
learn the map                        .

● Often better posed for long time 
extrapolation

● Easier to characterize 
growth/decay/oscillations

We use this framework to learn the 
dynamics of the ROM error 
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Network Architectures



Recurrent Neural Nets (RNNs) & Long-Short Term Memory (LSTM)

● RNNs with modified structure which 
enable them to learn long term 
dependencies.

● Natural architecture for parsing 
sequenced inputs or outputs (or 
both).

● LSTMs exhibit state-dependent 
context; i.e., they can look back in 
time a variable number of steps
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The Koopman Operator12

Dynamical system

Koopman Operator Koopman Eigenfunctions

Estimating the Koopman operator 
generates linear dynamics in right 
coordinates, even for nonlinear systems

Koopman eigenfunctions are an efficient 
choice of embedding, and have physical 
significance (Mezić 2016)



Deep Koopman Network

● Developed by Lusch et al. to learn 
Koopman eigenfunctions and use 
them for predictions

● Full version includes auxiliary 
network to account for nonlinear 
adjustments to Koopman 
eigenvalues corresponding to 
continuous spectra

13 Linear Predictive Autoencoder

Deep Koopman Network

Images from Lusch et al., 2016



Modified Deep Koopman Network

Our problem is more complex than 
those considered in Lusch et al.:

● Time dependent forcing (non-
autonomous dynamics)

● Varying physical parameters (      )

● Unknown dynamics, requiring a 
priori estimation of parts of 
network architecture
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Results



LSTM Training

● Predicts error time series given ROM 
displacement time series 

● Very fast training (~2s per epoch)
● Completely agnostic to parameter and 

forcing dependence
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LSTM Results: Linear Spring17



LSTM Results: Linear Spring; Varying 18



LSTM Results: Nonlinear Spring19



LSTM Results: Nonlinear Spring; Varying 20



Koopman Results

● Preliminary training on smooth 
sinusoidal time series

● Downsampling required to increase 
training speed

● Extensive hyperparameter tuning 
required to train effectively

● Numerical stability issues
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Koopman Results cont’d

● The network struggles to learn true 
ROM error

● Sequential network means we can’t 
take advantage of parallelism

● All errors start near zero, so the 
model has trouble reconstructing 
unique trajectories from each IC
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Conclusions



Conclusions

● Deep learning is an effective method 
for learning and predicting ROM 
error at coarse frequency scales

● Well-established architectures that 
maximize use of computational 
power often scale and train well

● Specialized architecture that aids in 
physical interpretability led to 
extreme sensitivity to 
hyperparameters and long train 
times

24

Physical Interpretability
Le

ve
ra

gin
g 

C
om

pu
ta

tio
na

l P
ow

er LSTM

Linear Predictive 
Autoencoder

Deep Koopman



Future work



Future Work
● Investigate sensitivity of training to breadth vs. length of time series for use in 

experiment/simulation design

● Incorporation of ROM-specific features; i.e., dual-weighted residuals, into network

● Implementation with alternate modes of operation; i.e., control, data fusion, etc.

● Addition of statistical outputs or Bayesian training/prediction for real time uncertainty 
quantification and error statistics

● Determine how well error predictions enhance the ability of ROM predictions to account for 
extreme events
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